Аэрозоли в атмосфере и их источники

Автор работы: Пользователь скрыл имя, 04 Июня 2015 в 03:52, контрольная работа

Описание работы

Аэрозольные загрязнения атмосферы приводят к заболеваниям дыхательных путей и токсичным отравлениям, а также могут стать причиной аллергических заболеваний.
Аэрозольные загрязнения антропогенного характера разрушают экосистему и мешают протеканию естественных природных процессов, к примеру, процесса фотосинтеза.
Поэтому очень важно, предотвращать или сокращать выбросы загрязняющих веществ в атмосферу и искать новые способы её очистки.

Содержание работы

Введение……………………………………………………………………………..3 стр.
Понятие атмосферного аэрозоля………………………………………….4-8 стр.
Источники атмосферных аэрозолей……………………………………..9-13 стр.
Образование аэрозолей………………………………………………….14-18 стр.
Процессы, протекающие с участием атмосферных аэрозолей……….19-27 стр.
Заключение………………………………………………………………………...28 стр.
Список литературы………………………………………………………………..29 стр.

Файлы: 1 файл

УЧЕНИЕ ОБ АТМОСФЕРЕ - копия.doc

— 885.00 Кб (Скачать файл)

Атмосферные аэрозоли являются естественными катализаторами фотохимических и иных реакций в атмосфере и конечными продуктами ряда процессов. В ходе атмосферного переноса аэрозольные частицы вступают с окружающей средой во взаимодействие, в результате которых изменяются их физические, химические и токсикологические характеристики. К основным процессам, определяющим эволюцию аэрозолей, можно причислить воздействие радиации, адсорбцию и абсорбцию газовых компонентов.

Яркой иллюстрацией этому может служить изменение химического состояния многих тяжелых металлов при их переносе в составе частиц на большие расстояния. Известно, что значительная часть таких металлов, как поступает в атмосферу в составе нерастворимых в воде соединений. В зависимости от характера источника доля нерастворимых форы этих металлов составляет соответственно 53-97, 65-98 и 55-99%. Однако анализ переносимых воздушными потоками в Антарктиду аэрозолей показывает, что все три металла полностью находится в них в форме водорастворимых соединений. Вероятным объяснением этому служит постепенное накопление на аэрозольных частицах кислот, вымывающих металлы из минеральных матриц. Отметим сразу: перевод металлов в раствор - фактор экологически неблагоприятный, поскольку высокую токсичность проявляют как раз ионные формы металлов, обладающие к тому же наибольшей подвижностью. Вымывание металлов после захвата аэрозольных частиц каплями облачной воды или вследствие поглощения частицами аэрозолей; кислот и им предшественников из газовой фазы формирует новые реакционные свойства дисперсной фазы: растворенные компоненты могут выступать в качестве катализаторов гомогенных жидкофазных окислительных процессов. Спектральные исследовании показывают, что ионы железа присутствуют в атмосферных каплях в основном в виде аквакомплексов типа а ионы , , в форме гексааквакомплексов. Такие комплексы активно поглощают свет в широком спектральном диапазоне с образованием свободных радикалов:

 

В ночное время в качестве основного "поставщика" радикалов гидроксила в жидкой фазе выступает реакция Фентона — разложение пероксида водорода ионами железа(II);

 

Постоянный поток из газовой фазы в жидкую пероксида водорода и восстановительных компонентов (например, формальдегида) придает атому процессу каталитический характер, поскольку ионы железа вновь переходят в двухвалентное состояние:

 

Гидроксильный и гидропероксидный радикалы наиболее мощные окислители из числа присутствующих в земной атмосфере: они с наибольшей скоростью, как в газовой, так и в жидкой фазе переводят а также инициируют окисление органических соединений.

Кроме гомогенных жидкофазных реакций в атмосфере Земли происходит гетерогенное окисление газовых компонентов и паров на поверхности твердых частиц. Как уже отмечалось, доля последних в общей аэрозольной составляющей атмосферы очень значительна.

Взаимодействие молекул с поверхностью включает:

1) адсорбцию и десорбцию;

2) темновые и фотостимулированные реакции адсорбированным компонентов между собой и с поверхностью частиц.

Особый интерес представляют гетерогенные фотостимулированные реакции молекул с многократно возбуждаемой излучением поверхностью, поскольку они могут формировать тропосферные: стоки даже химически инертных соединений.

Поток на единицу поверхности аэрозольных частиц молекул с массой и концентрацией в газовой фазе представляют в виде:

где — средняя тепловая скорость движения молекул. Число активных соударений молекул газа с поверхностью частицы в единицу времени составляет , где — вероятность протекания реакции при соударении. Тогда скорость гетерогенного стока газа на частицы с удельной поверхностью , может быть описана в упрощенном виде уравнением:

Это выражение действительно для условий свободномолекулярного режим, когда число Кнудсена ( —длина свободного пробега, —средний радиус частиц).

Таким образом. гетерогенный сток описывается как реакция первого порядка с эффективной константой:

В ряде случаев можно ограничить рассмотрение процессов гетерогенного стока теми из долгоживущих компонентов, гомогенные газофазные превращения, которых происходят примерно в десять раз медленнее, чем перенос в стратосферу: . В этом соотношении = и — соответственно времена жизни компонента по отношению к гетерогенному стоку и турбулентному переносу в вертикальном направлении, — вертикальная составляющая турбулентного переноса а — высота однородной атмосферы. Тогда гетерогенный сток будет значим при величинах вероятности протекания реакции:

 

Обычно в тропосферных моделях задают размеры частиц (средний радиус ), их счетную концентрацию и удельную поверхность . При этом чаще всего исходит из предположения о сферической форме частиц. Тогда  ,

удельную поверхность выражают в или в

Считается, что в приземном воздухе фоновых районов частиц находится в пределах . Исходя из этих величин, получим необходимую оценку по уравнению: гетерогенный сток можно считать значимым, если вероятность протекания реакции при соударениях будет больше, чем .

Величина уменьшается при увеличении , и, при прочих равных условиях, в сильно запыленной атмосфере урбанизованных районов значимость гетерогенного стока возрастает.

Например, при обычных для городскою воздуха счетных концентрациях на уровне поверхность сферических частиц увеличивается до , а уменьшается до

Найденные в лабораторных экспериментах значения для разложения озона на химически инертных частицах составляют и следовательно при моделировании химических процессов в воздухе городов нельзя пренебрегать гетерогенным стоком озона и многих других, даже значительно более долгоживущих компонентов. Это тем более верно, что форма частиц твердого тропосферного аэрозоля далека от идеально сферической, а значения удельной поверхности сильно занижены относительно реальных. Кроме того, вероятность реакции в случае некоторых компонентой может существенно возрастать вследствие специфического взаимодействия с возбуждаемой излучением поверхностью твердых частиц.

Особенность атмосферного аэрозоли заключается в том, что значительная часть его минеральной компоненты представлена материалами со свойствами полупроводников или широкополосных диэлектриков.

Область собственного поглощения основных компонентов природного аэрозоля в дальней УФ части спектра. Однако в природе, в том числе и в составе атмосферного аэрозоля, не встречаются химически чистые материалы. Наличие же примесей и другие дефекты кристаллической решетки обеспечивают возникновение проводимости при облучении светом в ближней УФ и видимой части спектра даже у таких материалов, как морская соль.

Неравновесное распределение электронов и дырок служит причиной возникновения фотосорбции (повышение сорбционной способности твердого тела при облучении светом) и протекания реакций окисления-восстановления, с участием адсорбированных на поверхности молекул. Движущей силой химических процессов на фотовозбуждённых полупроводниках является перенос заряда от поверхности к адсорбату или наоборот.

Образовавшиеся катион - радикалы и анион-радикалы в дальнейшем могут:

1) диссоциировать;

2) реагировать с другими адсорбатами  и с налетающими молекулами;

3) рекомбинировать через обратный  перенос электрона;

4) диффундировать по поверхности  полупроводника и переходить в объем раствора;

В обводненных аэрозолях взаимодействие молекул воды с дырками и приводит к образованию катион-радикала Н—ОН*, быстро диссоциирующего на протон и радикал НО*. Большую роль в окислительных процессах играет фотосорбция молекул кислорода с образованием высокоактивного супероксида :

 

Его протонизация приводит к образованию поверхностно-связанного радикала гидроксила.

Таким образом, на возбужденной светом поверхности природных аэрозолей генерируются радикальные положительно и отрицательно заряженные активные центры. Поэтому на ней могут происходить реакции с различными по характеру адсорбатами, в том числе с такими, которые кажутся абсолютно инертными в условиях тропосферы. Например, установлено, что на облучаемой светом поверхности полупроводниковых оксидов (входящих в состав природного аэрозоля) происходит разложение молекул воды, и даже молекулярного азота.

Знание природы и механизмов гетерогенных фотостимулированных процессов необходимо не только для прогресса атмосферной химии. Известно, что разнородные превращения адсорбатов происходят на облучаемых частицах полупроводниковых материалов, взвешенных в водной фазе. Отсюда вытекает возможность аналогичных химических реакций на взвесях в хорошо освещенном поверхностном слое морской воды. Другой аспект проблемы связан с возможностью разработки принципиально новых методов очистки как газовых, так и водных сред на основе глубокого фотокаталитического окисления примесей. Присутствие аэрозольных частиц существенно и для атмосферных оптических явлений: практически во всем оптическом диапазоне величины коэффициентов аэрозольного ослабления, рассеяния и поглощения приблизительно того же порядка, что и для всех вместе взятых атмосферных газов, но аэрозольные оптические характеристики гораздо более изменчивы как во времени, так и в пространстве. Кроме того, угловые оптические характеристики аэрозолей (например, индикатрисы рассеяния) существенно отличны от этих характеристик для газов. Вследствие этого в атмосфере наблюдаются такие оптические явления как зори, радуга, венцы, глории и др.

Присутствие аэрозолей и влаги в атмосфере играет чрезвычайно важную роль в формировании климата всей Земли. Их наличие существенно влияет на термический режим атмосферы и земной поверхности. Известно, что количество приходящей солнечной радиации зависит от состава атмосферы и прежде всего от наличия аэрозолей. Аэрозоли поглощают и рассеивают коротковолновую солнечную радиацию, уменьшая тем самым величину потока, приходящего на подстилающую поверхность (по современным данным альбедо системы Земля - атмосфера составляет 0,3 - 0,4). Это приводит к понижению температуры подстилающей поверхности. В свою очередь, находящиеся в атмосфере пары воды захватывают значительную часть длинноволнового излучения земной поверхности и направляют его обратно. Оно поглощается поверхностью, приводя к ее дополнительному нагреванию, и вновь излучается в атмосферу. Это явление получило название парникового эффекта. По современным оценкам пары воды определяют около 60% парникового эффекта.

В целом, можно выделить три основных пути влияния атмосферного аэрозоля на климат:

1. прямое влияние аэрозолей на  радиационный баланс системы "земная  поверхность—атмосфера" посредством  перераспределения коротковолнового солнечного и теплового излучений в этой системе за счет рассеяния и поглощения на аэрозольных частицах, неравномерно распределенных в земной атмосфере;

2. влияние аэрозольных частиц  на фазовые переходы воды в  атмосфере, в частности при облако- и осадкообразовании, что имеет для энергетики системы "земная поверхность — атмосфера" еще более важное значение, чем первый фактор; при этом очень важна роль газофазных реакций образования ядер конденсации, обусловленных природными и антропогенными выбросами в атмосферу, и прежде всего сернистого газа и диметилсульфида;

3. гетерогенные химические и  фотохимические процессы, в частности  реакции развала молекул озона  на поверхности аэрозольных частиц, ведущие к изменению газового  состава атмосферы, а, следовательно, и ее радиационного режима.

Наиболее крупные аэрозольные частички, обладающие гигроскопическими свойствами, играют в атмосфере роль ядер конденсации, т.е. центров, к которым присоединяются молекулы водяного пара, образуя водяные капельки. Капельки и кристаллы, в отличие от пылинок, возникают в самой атмосфере при конденсации водяного пара и могут исчезать, не выпадая вследствие испарения. Если они очень разрежены и мелки, то обнаруживаются по некоторому помутнению воздуха синеватого или сероватого цвета - дымке. Более плотные их скопления - облака и туманы. То есть, В широком смысле атмосферными аэрозолями, а точнее, стадией жизни атмосферного аэрозоля, можно назвать облака. Капельки облаков обычно очень мелки – от единиц до десятков микронов(т.е. от тысячных до сотых долей миллиметра) в диаметре. В каждом кубическом сантиметре облачного воздуха содержится несколько десятков или сотен капелек. Это значит, что на один кубический метр облачного воздуха приходится всего несколько граммов или даже долей грамма жидкой воды. Кристаллики в облаках также в большинстве очень мелки. Поэтому облака могут длительно удерживаться в атмосфере во взвешенном состоянии вследствие сопротивления воздуха и его восходящих движений. Но в облаках может происходить и укрупнение облачных элементов; достигнув определенных размеров, они начинают выпадать из облаков в виде осадков – капелек дождя, кристаллов снега и пр.

Взаимодействие аэрозолей и облаков можно представить с помощью следующей схемы:

 

Рис 2. Схематическое представление механизмов влияния на облака аэрозолей и радиационного воздействия.

Информация о работе Аэрозоли в атмосфере и их источники