Опорные инженерно-геодезические сети

Автор работы: Пользователь скрыл имя, 06 Января 2015 в 19:15, реферат

Описание работы

С точки зрения геометрии любая геодезическая сеть - это группа зафиксированных на местности точек, для которых определены плановые координаты (X и Y или B и L) в принятой двухмерной системе координат и отметки H в принятой системе высот или три координаты X, Y и Z в принятой трехмерной системе пространственных координат.

Содержание работы

Классификация и технические характеристики плановых геодезических сетей ……………………………………………………………………………….3
Методы построения плановых опорных геодезических сетей……………10
Спутниковые методы построения опорных сетей…………………………25
Сгущение спутниковой сети полигонометрическими ходами……………31
Высотные опорные геодезические сети…………………………………….34
Геодезическая техника в прикладной геодезии……………………………41
Список литературы .…………………………………………………………54

Файлы: 1 файл

Реферат.doc

— 776.00 Кб (Скачать файл)

При отсутствии необходимого высотного обоснования высоты в район съемки передаются прокладкой нивелирных ходов.

Методика производства работ и тип системы координат уточняются в соответствии с требованиями используемой системы позиционирования.

 

4. Сгущение спутниковой  сети полигонометрическими ходами

 

Геодезические сети сгущения в городах.

Геодезической основой строительства могут быть пункты геодезической сети сгущения городов и поселков, данные о которых хранятся в геодезической службе архитектурно - строительного управления. Если их густота недостаточна, то геодезическая сеть города или поселка служит для привязки геодезической основы строительного участка. Требования к точности и методы создания регламентированы инструкцией (таблица).

 

Характеристика сетей сгущения.

Показатели

Полигонометрия

 

4 класса

1-го разряда

2-го разряда

 

1.Предельная длина хода, км.

2.Предельный периметр, км.

3.Длина стороны хода, км

Наибольшая

Наименьшая

4.Относительная ошибка хода не более

5.Среднеквадратическая ошибка угла

6.Угловая невязка полигона

15

30

 

2,0

0,25

1:25000

3"

5" √n

5

15

 

0,8

0,12

1:10000

5"

10"√ n

3

9

 

0,35

0,08

1:5000

10"

20"√ n


 

Высотная опорная сеть.

Показатели

Класс нивелирования

 

II

III

IV

 

1.Средняя квадратич ошибка нивелир 1 км хода, мм.

2.Систематич ошибка на 1км хода, мм

3.Допустимые невязки и  расхожд сумм прямого и обрат хода, мм

4.Максимальн длина хода замкнутого, км

5.Длина хода между пикетами высшего класса, км

6.Длина хода между узловыми точками, км

7.Расстояние между рабочими реперами на стройплощ-ке, км

8.Наибольшее расстояние  от нивелира до рейки, м

9.Наименьшая высота визирного луча, м

2

0,4

5√ l

40

10

0,5

75

0,5

5

10√ l

25

15

5

0,5

75

0,3

10

20√l

10

5

3

0,5

100

 

0,2


 

Высотная сеть города обычно создается нивелированием III класса c невязкой хода, не превышающей 10 мм2, с допустимым расхождением в превышениях на станции 3 мм. Геодезические знаки плановых и высотных сетей чаще всего совмещают.

В настоящее время осуществляется переход к спутниковым методам определения координат пунктов плановых сетей. Этот метод может служить для сгущения существующей геодезической сети в пределах населенного пункта. В этом методе не требуется взаимная видимость пунктов.

В настоящее время спутниковый метод сгущения геодезической сети остается дорогостоящим. Отсутствуют нормативные документы, регламентирующие технологию и точность выполнения таких работ. Пока идут опытные определения координат через спутники. Так, реконструированы геодезические сети городов Иваново и Костромы. Анализ результатов полученных в этих городах выявил необходимость сетевого метода при создании городских спутниковых сетей. Имеется в виду сеть триангуляции или сеть полигонометрии. Переход на спутниковую систему создания плановой геодезической сети города и поселка связан с трудностями использования старого метода закрепления пунктов. В частности возникает необходимость разобрать внешние знаки в виде пирамид, исключается применение стенных знаков. Точность определения координат с использованием приемников Wild GPS System 200 достигается до 1/400000. Средняя квадратическая погрешность определения координат одной точки находится в интервале 6см-14см. В городских условиях на точность определения координат влияет все, что мешает приему радиосигналов: высокие сооружения, радиостанции, металлические каркасы и т.д. Координаты пунктов получаются в геодезической системе WGS-84, поэтому осуществляется их перевычисление в системе Гаусса-Крюгера.

Геодезические сети сгущения (ГCС) являются планово-высотным обоснованием топографических съемок масштабов от 1:5000 до 1:500, а также служат основой для производства различных инженерно-геодезических работ. Они создаются методами триангуляции и полигонометрии. По точности измерения углов и расстояний полигонометрия ГСС бывает 4-го класса, 1-го и 2-го разрядов.

Следует подчеркнуть, что измерения в 4-м классе полигонометрии ГСС выполняются со значительно меньшей точностью, чем в 4-м классе ГГС.

Государственную геодезическую сеть 4 класса можно считать переходным видом сетей между ГГС и ГСС. Отметки пунктов ГСС определяются из нивелирования IY класса или из технического нивелирования.

 

 

 

5. Высотные опорные геодезические сети

 

Опорная геодезическая сеть – это геодезическая сеть заданного класса (разряда) точности, которая создается в процессе инженерных изысканий и служит геодезической основой для обоснования проектной подготовки строительства, выполнения топографических съемок и аналитических определений положения точек местности и сооружений. Кроме того, для планировки местности, создания разбивочной основы для строительства, обеспечения других видов изысканий, а также выполнения стационарных геодезических работ и исследований.

Геодезические работы по созданию опорных геодезических сетей встречаются достаточно часто. Такие сети создаются для последующей топографической съемки территории (съемочное обоснование), для наблюдения за деформациями различных сооружений и для выполнения землеустроительных (опорные межевые сети) или геодезических разбивочных работ. При строительстве крупных промышленных предприятий опорные геодезические сети могут создаваться в виде сетки квадратов со сторонами в 100 и 200 метров.

Геодезические сети могут создаваться как в результате проведения спутниковых геодезических работ, так и проложением полигонометрических ходов, в которых измеряются углы и расстояния. Отметки пунктов геодезических сетей определяются, как правило, методами геометрического и тригонометрического нивелирования.

Опорная геодезическая сеть должна проектироваться и создаваться с учетом ее последующего использования при геодезическом обеспечении строительства и эксплуатации объекта. В геодезии плотность пунктов опорной сети при производстве инженерных изысканий устанавливается в программе изысканий из расчета не менее четырех пунктов на один квадратный километр на застроенных территориях или один пункт на один квадратный километр на незастроенных территориях. Точки геодезической опорной сети надежно закрепляются на местности.

Высотная геодезическая сеть (нивелирная сеть) — сеть пунктов земной поверхности, высоты которых над уровнем моря определены геодезическим методом нивелирования.

Пункты нивелирной сети закрепляют на местности нивелирными марками и реперами, которые закладывают в стены долговечных сооружений или непосредственно в грунт на некоторую глубину. Нивелирная сеть служит высотной основой топографических съемок, а при повторных определениях нивелирных высот её пунктов используется также для изучения вертикальных движений земной коры.

Высотная опорная геодезическая сеть развивается в виде сетей нивелирования I-IV классов точности, а также технического нивелирования в зависимости от площади и характера объекта строительства. Исходными для развития высотной опорной геодезической сети являются пункты государственной нивелирной сети (ГНС).

Балтийская система высот.

В настоящее время в России и ряде других стран СНГ используется Балтийская система высот.

Балтийская система высот — принятая в СССР в 1930 году система абсолютных высот, отсчёт которых ведётся от нуля Кронштадтского футштока. От этой отметки отсчитаны высоты опорных геодезических пунктов.

Нуль Кронштадтского футштока представляет собой многолетний средний уровень Балтийского моря. Система высот по данному исходному пункту создавалась при помощи наземных геодезических измерений, методами нивелирования I и II классов.

Для распространения единой системы высот по территории страны применяется Государственная нивелирная сеть (является частью Государственной геодезической сети). Главной высотной основой сети являются нивелирные сети I и II классов. Кроме установления Балтийской системы высот, они используются для решения научных задач: изучение изменения высот земной поверхности (земной коры), определения уровня воды морей и океанов и т. д. Как минимум, каждые 40 лет проводится повторное нивелирование всех линий нивелирования I класса и некоторых линий II класса.

Нивелирная сеть I класса состоит из сомкнутых полигонов периметром 1200—2000 км. Средняя ошибка определения высоты — менее 0.8 мм на 1 км хода. Нивелирная сеть II класса образует полигоны с периметром в 400—1000 км. Средняя погрешность определения высоты — менее 2 мм на 1 км хода.

 По результатам геодезических измерений производят расчёт плановых координат точек сети и их высотных отметок. Предельная погрешность взаимного планового положения смежных пунктов опорной геодезической сети после выполнения полевых геодезических работ и ее уравнивания не должна превышать заданных значений. Создаются каталоги координат и высот пунктов сети для дальнейшего использования.

Построение геодезических опорных сетей сгущения.

Геодезические опорные сети сгущения разделяются на два разряда. Сети создаваемые методом триангуляции, образуют типовые фигуры: центральную систему, цепь треугольников и геодезический четырехугольник. Каждая такая фигура опирается на пункты геодезической опоры высшего класса.

Сети сгущения являются опорой для создания съемочного обоснования при крупномасштабных съемках. Густота пунктов местного значения зависит от масштаба топографической съемки. Например, для съемки в масштабе 1:10000 при расстояниях между пунктами 2-3 км количество пунктов на трапеции должно быть не менее 4-5. Пункты закрепляются бетонными центрами и наружными знаками в виде пирамид или вех. Все пункты сети сгущения 1 и 2 разряда должны иметь линейные координаты на плоскости и отметки центров, определяемые техническим нивелированием.

При создании опорных сетей сгущения на большой площади составляется предварительный проект ее построения. Проект содержит:

1.Изложение целей и  задач создания опоры для съемки  заданных масштабов.

2. Сведение о наличии опорных пунктов государственной сети высших классов с координатами, высотами и территориальное размещение на заданной площади.

3. Мелкомасштабный план со схематически нанесенными границами трапеций съемочных планшетов аналитической сети. При этом показываются типовые фигуры цепи треугольников, центральных систем, четырехугольников и др. В закрытой местности целесообразно проектировать полигонометрические ходы. Схема размещения пунктов должна обеспечивать опору каждого планшета для развития съемочного обоснования.

4.Сведения о характере закладке центров и знаков.

После составления проекта исполнитель выезжает в поле для осуществления проекта. Рекогносцировка состоит в уточнении проекта по размещению опорных пунктов и окончательном выборе местоположения пунктов. Пункты выбираются на командных высотах местности с учетом построения съемочной сети. При рекогносцировке иногда производятся небольшие изменения проекта в соответствии с местными условиями. После рекогносцировки производится построение центров и знаков, а затем измерение углов и линий.

Измерение горизонтальных углов опорных сетей.

Измерение направлений способом круговых приемов. Для измерения направлений из точки М на пункты A, B, C, D в т. М устанавливают теодолит, алидаду скрепляют с лимбом на отсчете 1-2’ и поворотом лимба направляют трубу на т. А.

При этом положении инструмента берем отсчет по лимбу и записываем его в журнал полевых измерений. Затем лимб оставляют закрепленным, а алидаду поворачивают по направлению хода часовой стрелки и наводят трубу последовательно на точки B, C, D и снова на А, беря на каждой из них отчет и записывая в журнал. Повторный отсчет на тачку А контролирует постоянство положения лимба и уточняет наблюдение. Произведенный перечень наблюдений составляет один полуприем. Второй полуприем отличается от первого тем, что трубу переводим через зенит и берем отчеты против часовой стрелки, т. е. в последовательности A. D. C. B. A. Оба эти полуприема составляют один полный прием.

Инженерно-геодезические плановые и высотные опорные сети представляют собой систему геометрических фигур, вершины которых закреплены на местности специальными знаками. При составлении проекта производства геодезических работ (ППГР) собирают сведения, относящиеся к опорным геодезическим сетям во всех организациях, производящих работы на территории города или поселка в районе строительства; в территориальных инспекциях Федеральной службы геодезии и картографии при Совете Министров РФ, в управлениях (отделах) по делам строительства и архитектуры; в краевых, областных и городских администрациях; в изыскательских и проектно-изыскательских организациях. По собранным материалам составляют схему расположения пунктов ранее выполненных опорных геодезических сетей всех классов и разрядов в пределах территории предстоящих работ. В инженерно-геодезической практике достаточно часто встречаются случаи, когда сеть создается заново, даже при наличии близкорасположенных пунктов ранее созданных сетей. Это делается с целью обеспечения повышенной точности определения взаимного положения пунктов.

Информация о работе Опорные инженерно-геодезические сети