Государственные геодезические сети

Автор работы: Пользователь скрыл имя, 09 Декабря 2014 в 12:08, реферат

Описание работы

Геодезия является очень распространенной областью знаний, с которой человек постоянно сталкивается в практической деятельности, используя топографические карты, занимаясь строительством дорог, зданий, промышленных комплексов, запуская космические корабли и т.д. В целом ее можно разделить на "собственно геодезию”, занимающуюся вопросами геодезического обеспечения в повседневной практике, и высшую геодезию, которая делает возможным это простое применение геодезии в нашей повседневной жизни.

Файлы: 1 файл

Триангуляция.docx

— 1.91 Мб (Скачать файл)

В методе триангуляции на командных высотах местности закрепляют систему геодезических пунктов, образующих сеть треугольников (рис.2.1). В каждом треугольнике этой сети измеряют все три горизонтальных угла β. Результаты угловых измерений в сети триангуляции подвергаются специальной математической обработке, в процессе которой получают уравненные значения плановых координат пунктов. Для определения плановых координат пунктов в сети триангуляции должны быть известны как минимум координаты x, y одного пункта сети, длина базисной стороны b и дирекционный угол α этой стороны. Для контроля число исходных данных может быть увеличено. Так на рис.2.1 показано, что в качестве исходных заданы координаты x, y пункта А, дирекционные углы α1, α2 и длины b1, b2 сторон AB и СD (базисов).

Сеть триангуляции может быть построена в виде отдельного ряда треугольников, системы рядов треугольников, а также в виде сплошной сети треугольников. Элементами сети триангуляции могут служить не только треугольники, но и более сложные фигуры: геодезические четырехугольники и центральные системы.

 

Рис.2.1 Сеть триангуляции

 

Условные обозначения: - определяемые пункты триангуляции; βı, βj, βk - измеренные углы в треугольнике; Δ А - исходный пункт триангуляции; α1, α2 - исходные дирекционные углы; b1, b2 - исходные базисы.

Основными достоинствами метода триангуляции являются:

  • оперативность и возможность использования в разнообразных физико-географических условиях;

  • большое число избыточных измерений в сети, позволяющих непосредственно в поле осуществлять надежный контроль измерения углов по невязкам треугольников, так как известно, что сумма углов треугольника равна 180°, т.е.

 

W = βi + β ĵ + βk - 180˚ (2.1),

 

где W - невязка треугольника, βi, βĵ, βk - измеренные углы треугольника. (Допустимые значения невязок треугольников для каждого класса и разряда триангуляции устанавливаются соответствующими Инструкциями);

высокая точность определения взаимного положения смежных пунктов в сети, особенно сплошной.

Основными недостатком метода триангуляции является высокая стоимость работ из-за необходимости постройки наружных знаков с целью открытия видимости между пунктами сети.

Метод триангуляции получил наибольшее распространение при построении государственных геодезических сетей наземными способами, а также при развитии инженерно-геодезических сетей.

В методе трилатерации, как и в методе триангуляции, предусматривается создание на местности сети треугольников. Однако вместо углов в трилатерации измеряются стороны треугольника. Для получения координат пунктов в сети трилатерации необходимо иметь как минимум координаты х, у одного пункта сети и дирекционный угол α одной из сторон сети, так как масштаб сети задается всеми измеренными сторонами.

По ряду причин метод трилатерации в чистом виде не получил широкого распространения, однако при создании специальных геодезических сетей повышенной точности, например, плановых сетей на геодинамических полигонах, он широко применяется в сочетании с триангуляцией, т.е. создаются линейно-угловые сети, когда в треугольниках измеряются углы и линии.

Сущность метода полигонометрии заключается в следующем. На местности закрепляют систему геодезических пунктов, образующих вытянутый одиночный ход (рис.2.2) или систему пересекающихся ходов, образующих сплошную сеть. Между смежными пунктами хода измеряют длины сторон Si, а на пунктах - углы поворота βi. Конечные пункты полигонометрии являются исходными, т.е. с известными плановыми координатами х, у. На них измеряют примычные углы γА и γВ между твердыми и определяемыми сторонами. Для твердых сторон должны быть известны дирекционные углы, с помощью которых задается ориентирование полигонометрического хода.

 

Рис.2.2 Полигонометрический ход.

 

Условные обозначения: А, В - исходные пункты хода полигонометрии;

АС, ВD - твердые или исходные направления; α1, α2 - исходные дирекционные углы;

γА, γВ - примычные углы; 1, 2, 3…… к - определяемые пункты; β1, β2…… βк - измеренные углы; S1, S2.. Sк+1 - измеренные стороны.

Применение метода полигонометрии выгодно в закрытой местности (например, в залесенной местности или на застроенных территориях), так как требует строительства значительно меньшего числа дорогостоящих геодезических знаков по сравнению с триангуляцией для открытия видимости между пунктами. Однако при создании государственных плановых геодезических сетей высшего класса он менее выгоден, чем триангуляция, потому что имеет значительно меньшее число избыточных измерений, слабые полевые контроли, а, следовательно, меньшую точность. Метод полигонометрии получил очень широкое распространение при создании сетей сгущения, включая и инженерно-геодезические сети.

 

2.2 Понятие о спутниковых методах создания геодезических сетей

 

В настоящее время при определении координат точек земной поверхности из наблюдений искусственных спутников Земли (ИСЗ) применяют, в основном, геометрический и динамический методы. В геометрическом методе ИСЗ используются как пассивные визирные цели, например, при синхронных измерениях расстояний с исходных и определяемых пунктов до ИСЗ. В случае динамического метода ИСЗ являются носителями координат, по которым можно автономно определить координаты точки земной поверхности. Точность динамического метода для создания опорных геодезических сетей в настоящее время является недостаточной, поэтому поясним идею развития этих сетей на примере геометрического метода спутниковых наблюдений для одного треугольника ί1ί2 ј плановой геодезической сети (рис.2.3).

Устанавливаем три спутниковых приемника в пунктах ί1, ί2, ј на земной поверхности, далее выполняем синхронные наблюдения со всех трех пунктов вначале на положение ИСЗ k1, затем на k2 и далее на k3. Из Δ ί1 ί2 k1, Δ ί1 ί2 k2 и Δ ί1 ί2 k3 по формулам прямой геодезической засечки находим координаты спутника в точках k1, k2 и k3. Затем из построения k1 k2 k3 ј по формулам обратной геодезической засечки определяем координаты определяемого пункта ј. Как правило, в результате предварительной обработки по программам, сопровождающим спутниковые приемники, получают приращения пространственных координат между пунктами геодезической сети.

 

Рис.2.3 Геометрический метод определения координат пунктов геодезической сети.

 

Условные обозначения: Δ ί1ί2 ј - треугольник геодезической сети;

ί1, ί2 - исходные пункты геодезической сети; ј - определяемый пункт геодезической сети; k1, k2, k3 - положения ИСЗ.

сети, которые в дальнейшем используют при уравнивании сети как измеренные величины. При необходимости пространственные координаты пунктов, полученные после уравнивания, перевычисляют в плоские прямоугольные координаты.

 

2.3 Схемы и программы построения существующих опорных геодезических сетей

 

Плановая опорная сеть. В советский период существовало две программы построения государственной плановой сети:

  1. Программа построения государственной триангуляции Ф.Н. Красовского, которая изложена в "Основных положениях о построении государственной опорной геодезической сети СССР 1939 г. "

  1. Программа построения государственной геодезической сети СССР, опубликованная в "Основных положениях о построении государственной геодезической сети СССР 1954-1961 гг." и в "Инструкции о построении государственной геодезической сети 1966 г. "

Созданная государственная плановая геодезическая сеть по программе Красовского по точности была достаточной для топографических съемок только вплоть до масштаба 1: 10000. Однако сразу же в послевоенные годы возникла необходимость картографирования территории в масштабах 1: 5000 и 1: 2000. Поэтому, начиная с шестидесятых годов, стала реализовываться вторая программа построения ГГС, согласно которой ГГС СССР является главной геодезической основой топографических съемок всех масштабов вплоть до масштаба 1: 2000 и должна удовлетворять требованиям народного хозяйства и обороны страны при решении соответствующих научных и инженерно - технических задач. Она создается методами триангуляции, полигонометрии, трилатерации или их сочетаниями, что определяется требованиями точности и экономичности. Построение ГГС осуществляется в соответствии с принципом перехода от общего к частному.

Существующая государственная геодезическая сеть Беларуси является частью государственной геодезической сети СССР, которая создана в соответствии со второй программой и усовершенствована к 1991 г. в результате совместного уравнивания сетей триангуляции 1 и 2 классов.

Государственная геодезическая сеть подразделяется на сети 1,2,3 и 4 классов, различающиеся между собой точностью измерения углов и расстояний, длиной сторон сети и очередностью последовательного развития. Основной является геодезическая сеть 1 класса, которая строится в виде полигонов периметром порядка 800 км. Каждый полигон состоит из четырех звеньев астрономо-геодезической сети, располагаемых в направлении меридианов и параллелей (рис.2.4).

При этом каждое звено представляет собой ряд триангуляции или полигонометрии протяженностью порядка 200 км. На концах каждого звена 1 класса организуют астробазис с двумя пунктами Лапласа (пункты, на которых выполнены определения астрономических широты, долготы и азимута направления между ними). В середине каждого звена 1 класса создаются еще промежуточные астропункты, на которых определяют только астрономические широту и долготу, т.е. и . Вдоль всех первоклассных рядов выполняют гравиметрическую съемку, а вокруг астропунктов - гравиметрическую съемку сгущения.

 

 

Звено триангуляции 1 класса состоит, в основном, из треугольников с углами не менее 40˚ и сторонами порядка 25-30 км. Базисы, как правило, устраивают на концах звена между пунктами Лапласа. Измерение длин базисов выполняется высокоточными светодальномерами. С помощью астрономических азимутов задается ориентировка сети, по базисам осуществляется ее масштабирование, а результаты определения астрономических широт, долгот и гравиметрической съемки используются при решении задачи редуцирования на поверхность относимости при математической обработке геодезических данных.

Звенья полигонометрии 1 класса прокладывают в виде вытянутых ходов, состоящих не более чем из 10 сторон длиной ~ 20км. Точность первоклассных измерений характеризуется величинами:

 

; ; ; ; .

 

В дальнейшем первоклассные полигоны заполняются сплошной сетью триангуляции 2 класса. Длины сторон треугольников 2 класса равны в среднем 10-15км. Угол в треугольнике 2 класса должен быть не менее 300. В триангуляции 2 класса равномерно через 25 треугольников размещают базисы, длины которых определяют с ошибкой не ниже 1: 400 000. Одна из базисных сторон должна находиться примерно в центре полигона 1 класса, на концах этой стороны определяют пункты Лапласа с той же точностью астрономических измерений, что и в триангуляции 1 класса. Углы во 2 классе измеряют c ошибкой не ниже .

Сеть триангуляции 2 класса сгущается сетями 3 и 4 классов, которые, как правило, создаются методами триангуляции.

Сети триангуляции 3 и 4 класса строят в виде жестких систем сплошных треугольников, вставляемых в сеть триангуляции 2 класса.

На каждом пункте ГГС всех классов на расстоянии от него 0,25-1 км устанавливается по 2 ориентирных пункта, которые закрепляют центрами. Ориентирные пункты необходимы для азимутальной привязки съемочных ходов, для военных и других целей, а также для поиска центра пункта триангуляции при утрате наружного знака.

Высоты всех пунктов плановой ГГС определяют преимущественно из тригонометрического нивелирования.

 

Таблица 2.1. Технические характеристики ГГС СССР, созданной в соответствии с "Основными положениями 1954 - 61гг. "

Класс сети

Длина стороны, км

СКО измеренного угла

Ошибка стороны в слабом месте

Ошибка определения взаимного положения смежных пунктов, м

1

2

3

4

20-25

7-20

5-8

2-5

0,7

1,0

1,5

2,0

1/150000

1/200000

1/120000

1/70000

~ 0,15

~ 0,06

~ 0,06

~ 0,06


 

 

 

2.4 Совершенствование ГГС СССР и Беларуси

 

Плановая ГГС СССР, созданная в соответствии с "Основными положениями 1954-1961гг", характеризуется высокой точностью определения взаимного положения смежных пунктов. Однако несмотря на это, астрономо - геодезическая сеть 1 класса менее точна, чем опирающаяся на нее сеть 2 класса, а должно быть наоборот. Это приводит к тому, что сети 2 класса, уравниваемые внутри полигона 1 класса, элементы которого принимаются за исходные данные, несколько деформируются. При этом наиболее ощутимые искажения сети 2 класса наблюдаются вблизи сторон треугольников 1 класса. Эти искажения затем быстро уменьшаются по мере удаления от треугольников 1 класса по направлению к центру каждого полигона вследствие большой геометрической жесткости сплошных сетей триангуляции 2 класса.

Для устранения указанного недостатка сети 1 и 2 классов необходимо уравнять совместно по методу наименьших квадратов, используя все измеренные в них горизонтальные направления, азимуты и базисы с учетом их весов. В результате будет получена сплошная АГС, покрывающая всю территорию страны.

Практическая реализация этой идеи началась со 2 марта 1979г. после утверждения в ГУГК "Основных положений по общему уравниванию АГС", разработанных ЦНИИГАиК, НИИ ВТС и Московским АГП. К 1991 году совместное уравнивание 1 и 2 классов было завершено. Уравнивание выполнялось по методу сопряженных градиентов, по программе Г.Н. Ефимова. В уравниваемую сеть АГС вошло 164 306 пунктов, в основном, триангуляционных, 340 - полигонометрии, 280 - трилатерации, 162 пункта из наблюдений американской спутниковой системы "Транзит".90% всех измерений было произведено геодезическими подразделениями ГУГК СССР. Уравнивание выполнялось на поверхности референц - эллипсоида Красовского. Характеристики АГС после уравнивания представлены в таблице 4.2.

Информация о работе Государственные геодезические сети