Механизм мышечного сокращения и расслабления

Автор работы: Пользователь скрыл имя, 07 Сентября 2017 в 14:29, реферат

Описание работы

Подвижность является характерным свойством всех форм жизни. Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, перемещении рибосом в ходе белкового синтеза, сокращении и расслаблении мышц. Мышечное сокращение – наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.
У человека различают несколько видов мышечной ткани.

Файлы: 1 файл

Физиология.docx

— 85.25 Кб (Скачать файл)

Механизм мышечного сокращения и расслабления.

Подвижность является характерным свойством всех форм жизни. Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, перемещении рибосом в ходе белкового синтеза, сокращении и расслаблении мышц. Мышечное сокращение – наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.

У человека различают несколько видов мышечной ткани. Поперечно-полосатая мышечная ткань составляет мышцы скелета (скелетные мышцы, которые мы можем сокращать произвольно). Гладкая мышечная ткань входит в состав мышц внутренних органов: желудочно-кишечного тракта, бронхов, мочевыводящих путей, кровеносных сосудов. Эти мышцы сокращаются непроизвольно, независимо от нашего сознания.

В данной лекции мы рассмотрим строение и процессы сокращения и расслабления скелетных мышц, поскольку именно они представляют наибольший интерес для биохимии спорта.

Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии  для мышечного сокращения являются  молекулы АТФ.

2. Гидролиз АТФ катализируется  при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом  мышечного сокращения является  повышение концентрации ионов  кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного  сокращения между тонкими и  толстыми нитями миофибрилл возникают  поперечные мостики или спайки.

5. Во время мышечного  сокращения происходит скольжение  тонких нитей вдоль толстых, что  приводит к укорочению миофибрилл  и всего мышечного волокна  в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн саркоплазматической сети и присоединяются к белку тонких нитей – тропонину. Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате образуется поперечный мостик между актином тонких нитей и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается , прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.

В каждом цикле сокращения расходуется 1 молекула АТФ.

В основе мышечного сокращения лежат два процесса:

спиральное скручивание сократительных белков;

циклически повторяющееся образование и диссоциация комплекса между цепью миозина и актином.

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва, где выделяется нейрогормон ацетилхолин, функцией которого является передача импульсов. Сначала ацетилхолин взаимодействует с ацетилхолиновыми рецепторами, что приводит к распространению потенциала действия вдоль сарколеммы. Все это вызывает увеличение проницаемости сарколеммы для катионов Na+, которые устремляются внутрь мышечного волокна, нейтрализуя отрицательный заряд на внутренней поверхности сарколеммы. С сарколеммой связаны поперечные трубочки саркоплазматического ретикулума, по которым распространяется волна возбуждения. От трубочек волна возбуждения передается мембранам пузырьков и цистерн, которые оплетают миофибриллы на участках, где происходит взаимодействие актиновых и миозиновых нитей. При передаче сигнала на цистерны саркоплазматического ретикулума, последние начинают освобождать находящийся в них Са2+. Высвобожденный Са2+ связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее на актин. Актин как бы освобождается из комплекса с компонентами тонких филаментов, в котором он находился. Далее актин взаимодействует с миозином, и результатом такого взаимодействия является образование спайки, что делает возможным движение тонких нитей вдоль толстых.

Генерация силы (укорочение) обусловлена характером взаимодействия между миозином и актином. На миозиновом стержне имеется подвижный шарнир, в области которого происходит поворот при связывании глобулярной головки миозина с определенным участком актина. Именно такие повороты, происходящие одновременно в многочисленных участках взаимодействия миозина и актина, являются причиной втягивания актиновых филаментов (тонких нитей) в Н-зону. Здесь они контактируют (при максимальном укорочении) или даже перекрываются друг с другом, как это показано на рисунке.

а

б

в

Рисунок. Механизм сокращения: а – состояние покоя; б – умеренное сокращение; в – максимальное сокращение

Энергию для этого процесса поставляет гидролиз АТФ. Когда АТФ присоединяется к головке молекулы миозина, где локализован активный центр миозиновой АТФазы, связи между тонкой и толстой нитями не образуется. Появившийся катион кальция нейтрализует отрицательный заряд АТФ, способствуя сближению с активным центром миозиновой АТФазы. В результате происходит фосфорилирование миозина, т. е. миозин заряжается энергией, которая используется для образования спайки с актином и для продвижения тонкой нити. После того как тонкая нить продвинется на один «шаг», АДФ и фосфорная кислота отщепляются от актомиозинового комплекса. Затем к миозиновой головке присоединяется новая молекула АТФ, и весь процесс повторяется со следующей головкой молекулы миозина.

Затрата АТФ необходима и для расслабления мышц. После прекращения действия двигательного импульса Са2+ переходит в цистерны саркоплазматического ретикулума. Тн-С теряет связанный с ним кальций, следствием этого являются конформаци-онные сдвиги в комплексе тропонин-тропомиозин, и Тн-I снова закрывает активные центры актина, делая их неспособными взаимодействовать с миозином. Концентрация Са2+ в области сократительных белков становится ниже пороговой, и мышечные волокна теряют способность образовывать актомиозин.

В этих условиях эластические силы стромы, деформированной в момент сокращения, берут верх, и мышца расслабляется. При этом тонкие нити извлекаются из пространства между толстыми нитями диска А, зона Н и диск I приобретают первоначальную длину, линии Z отдаляются друг от друга на прежнее расстояние. Мышца становится тоньше и длиннее.

Скорость гидролиза АТФ при мышечной работе огромна: до 10 мк моль на 1 г мышцы за 1 мин. Общие запасы АТФ невелики, поэтому для обеспечения нормальной работы мышц АТФ должна восстанавливаться с той же скоростью, с какой она расходуется.

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса, используя энергию АТФ, уходят в цистерны. Удаление ионов кальция в цистерны ретикулума после прекращения двигательного импульса требует значительных энерготрат. Так как удаление ионов кальция происходит в сторону более высокой концетрации, т.е. против осмотического градиента, то на удаление каждого иона кальция затрачивается две молекулы АТФ. Концентрация ионов кальция в саркоплазме быстро снижается до исходного уровня. Белки вновь приобретают конформацию характерную для состояния покоя.

Таким образом, и процесс мышечного сокращения и процесс мышечного расслабления – это активные процессы, идущие с затратами энергии в виде молекул АТФ,

В гладких мышцах нет миофибрилл, которые состоят из нескольких сотен саркомеров. Тонкие нити присоединяются к сарколемме, толстые находятся внутри волокон. Ионы кальция также играют роль в сокращении, но поступают в мышцу не из цистерн, а из внеклеточного вещества, поскольку в гладких мышцах отсутствуют цистерны с ионами калькия. Этот процесс медленный и поэтому медленно работают гладкие мышцы.

РЕЖИМЫ И ТИПЫ МЫШЕЧНЫХ СОКРАЩЕНИЙ

просмотров - 261

Типы мышечных сокращений. По способу укорочения мышц различают три типа мышечных сокращений:

1) изотоническое, при котором волокна укорачиваются при постоянной внешней нагрузке, в реальных движениях проявляется редко (так как мышцы укорачиваясь вместе с тем меняют своё напряжение);

2) изометрическое – это тип активации, при котором мышца развивает напряжение без изменения своей длины. На нём построена так называемая статическая работа двигательного аппарата человека. К примеру, в режиме изометрического сокращения работают мышцы человека, который подтянулся на перекладинœе и удерживает своё тело в этом положении;

3) ауксотоническое или анизотоническое – это режим, при котором мышца развивает напряжение и укорачивается. Именно данный тип мышечных сокращений обеспечивает выполнение двигательных действий человека.

У анизотонического сокращения две разновидности сокращения мышцы: в преодолевающем и уступающем режимах.

В преодолевающем режиме мышца укорачивается в результате сокращения (к примеру, икроножная мышца бегуна укорачивается в фазе отталкивания).

В уступающем режиме мышца растягивается внешней силой (к примеру, икроножная мышца спринтера при взаимодействии ноги с опорой в фазе амортизации).

На рисунке 1 изображена динамика работы мышцы в преодолевающем и уступающем режимах.

Правая часть кривой отображает закономерности преодолевающей работы, при которой возрастание скорости сокращения мышцы вызывает уменьшение силы тяги.

В уступающем режиме наблюдается обратная картина: увеличение скорости растяжения мышцы сопровождается увеличением силы тяги (что является причиной многочисленных травм у спортсменов, к примеру, разрыв ахиллова).

При скорости, равной нулю, мышцы работают в изометрическом режиме.

Для движения звена в суставе под действием мышечных сил важны не сами силы, а создаваемые ими моменты сил, поскольку движение звена - ϶ᴛᴏ ни что иное, как вращение относительно оси, проходящей через сустав. По этой причине разновидности работы мышц можно выразить в терминах моментов сил: если отношение момента внутренних сил к моменту внешних рано единице, режим сокращения будет изометрическим, если больше единицы – преодолевающим, если меньше единицы – уступающим.

Групповое взаимодействие мышц. Существует два вида группового взаимодействия мышц: синœергизм и антагонизм.

Мышцы-синœергисты перемещают звенья тела в одном направлении. К примеру, в сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плечелучевая мышцы. В результате синœергического взаимодействия мышц увеличивается результирующая сила действия.

Мышцы-антагонисты имеют разнонаправленное действие: если одна из них выполняет преодолевающую работу, то другая – уступающую. Мышцы обеспечивают возвратно-вращательные движения звеньев тела, поскольку каждая из них работает только на сокращение; высокую точность двигательных действий, так как звено крайне важно не только привести в движение, но и затормозить в нужный момент. Антагонисты состоят из пары: агонист (сгибатель) – антагонист (разгибатель).

 

Аэробный путь ресинтеза АТФ

(синонимы: тканевое дыхание, аэробное или окислительное фосфорилирование) – это основной, базовый способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода (два протона и два электрона) и по дыхательной цепи передаются на Молекулярный кислород – О2, доставляемый кровью в мышцы из воздуха, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ. В свою очередь, ацетил – КоА может образовываться из углеводов, жиров и аминокислот, т.е. через ацетил – КоА в цикл Кребса вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного пути ресинтеза АТФ контролируется содержанием в мышечных клетках АДФ, который является активатором ферментом тканевого дыхания. В состоянии покоя, когда в клетках почти нет АДФ, тканевое дыхание протекает с очень низкой скоростью. При мышечной работе за счет интенсивного использования АТФ происходит образование и накопление АДФ. Появившийся избыток АДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором аэробного пути ресинтеза АТФ является СО. Возникающий при физической работе в избытке углекислый газ активизирует дыхательный центр мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышц кислородом.

Аэробный путь образования АТФ характеризуется следующими критериями:

- максимальная мощность (составляет 350-450 кал/мин кг);

- время развертывания (3-4 минуты, у хорошо тренированных  спортсменов может быть около 1 мин.);

- время работы с максимальной  мощностью (составляет десятки минут).

Как уже указывалось, источниками энергии для аэробного ресинтеза АТФ являются углеводы, жиры и аминокислоты, распад которых завершается циклом Кребса. Причем для этой цели используются не только внутримышечные запасы данных веществ, но и углеводы, жиры кетоновые тела и аминокислоты, доставляемые кровью в мышцы во время физической работы. В связи с этим данный путь ресинтеза АТФ функционирует с максимальной мощностью течение такого продолжительного времени.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный ресинтез имеет ряд преимуществ. Он отличается высокой экономичностью: в ходе этого процесса идет глубокий распад окисляемых веществ до конечных продуктов – СО и НО и поэтому выделяется большое количество энергии. Другим достоинством этого пути ресинтеза является универсальность в использовании субстратов. В ходе аэробного ресинтеза АТФ окисляются все основные органические вещества организма: аминокислоты (белки), углеводы, жирные кислоты, кетоновые тела и др. Еще одним преимуществом этого способа образования АТФ является очень большая продолжительность его работы: практически он функционирует постоянно в течение всей жизни.

Информация о работе Механизм мышечного сокращения и расслабления