Автор работы: Пользователь скрыл имя, 21 Ноября 2010 в 15:16, Не определен
Английский физик и химик Майкл Фарадей установил законы электролиза, связавшие количество электричества, прошедшее через раствор, с массой и природой растворенного вещества. Он создал количественную электрохимию – раздел химии, изучающий процессы перехода химической энергии в электрическую и обратно.
5.
Напряжение разложения
электролита.
При наложении на электроды внешнего тока равновесие электродных реакций [Ох]+nе < > [Red] нарушается. На электроде, присоединенном к отрицательному полюсу источника тока, оно сместится вправо, а потенциал — до значения, при котором скорость реакции восстановления окислителя будет превосходить скорость обратной реакции на величину внешнего тока. На электроде, присоединенном к положительному полюсу источника тока, будут происходить аналогичные электродные процессы, но противоположно направленные. В результате смещения потенциалов в электролизере возникает э. д. с, равная напряжению, приложенному извне, и противоположная по направлению. Однако, как показывает опыт, ток заметной величины начинает проходить через электролитическую ячейку лишь при достижении напряжения на электролизере до определенной величины. Зависимость силы тока от приложенного напряжения при электролизе показана на графике (рис. 2). На кривой виден излом. Продолжение прямого участка кривой до пересечения с ось абсцисс отсекает на ней отрезок, равный минимальному напряжению, необходимому для разложения электролита инертных электродах, при котором происходит электролиз с заметной скоростью. Это минимальное напряжение называют напряжением (э.д.с.) разложения электролита.
Равновесные потенциалы электродных реакций, протекающих при электролизе, рассчитывают по формуле Нернста. Для этого в таблице стандартных электродных потенциалов находят значения потенциалов реакций, подставляют в формулу концентрации веществ, участвующих в электродных реакциях и решают уравнение с одним неизвестным. Разность найденных по формуле Нернста равновесных потенциалов катода и анода равна э. д. с, при которой скорости прямых и обратных реакций на электродах равны. Следовательно, при найденном значении э. д. с. ток в цепи равен нулю. Электролиз будет протекать лишь при напряжении, превосходящем разность равновесных потенциалов электродных реакций. Только при таком условии возможно прохождение тока. Например, при электролизе воды катод можно рассматривать как водородный, а анод как кислородный электроды. Э. д. с. такой пары электродов при отсутствии тока в цепи и рН—7 равна 1,23 в.
Рис. 2. График зависимости
силы тока от напряжения при
электролизе.
При получении кислорода и водорода электролизом, раствора серной кислоты на платиновых электродах требуется напряжение на 0,5 в большее, чем 1,23 в, а именно не менее 1,7 в. Эта часть напряжения необходима для преодоления сопротивления протеканию тока, связанного с перенапряжением (затруднением) электрохимических реакций, и сопротивления электролита.
Где V – напряжение на электродах ванны;
фа и фк – потенциалы катода и анода, рассчитанные по формуле Нернста,
с учетом изменения концентрации веществ при электролизе;
фраств – падение напряжения на сопротивлении раствора
na и nk – перенапряжение анодной и катодной реакций.
При
этом часть электродной
A = n*F*v = n*F*(фа - фк +na +nk
+ фраств ) = An + Ah + Aраств
Где n*F – число Фарадеев электричества, необходимое для восстановления
на катоде и окисления на аноде 1 моля вещества.
An - Полезная работа (An = n*F*(фа - фк));
Aраств - теплота освобождающаяся на сопротивление электролита
(Араств = n*F*фраств);
Ah - теплота освобождающаяся на сопротивление перенапряжения
(Ап
= n*F*(na +nk));
Из этих уравнений следует, что перенапряжение электродных реакций и сопротивление раствора снижают к. п. д. электролитической ванны.
Напряжение
разложения электролита равно разности
между напряжением, подаваемым на ванну,
и падением напряжения на сопротивлении
раствора. Оно складывается из равновесных
электродных потенциалов и соответствующих
перенапряжений катодной и анодной реакций:
Ep = v - фраств
= фа - фк +na +nk
Напряжение
разложения зависит как от природы
электролита, так и от природы
электродов.
6. Поляризация электродов.
При электролизе
потенциалы электродов
Химическая поляризация
В ряде случаев прохождению
электрического тока
Перенапряжение электродных реакций можно
вычислить по разности между напряжением
разложения и э.д.с. химической поляризации:
Оно зависит от плотности
тока, проходящего через электроды,
и эта зависимость выражается уравнением
Тафеля:
2-3 мв. Оно также
зависит от природы вещества,
из которого изготовлен
Электроды | Перенапряжение, в | ||
водорода | кислорода | ||
ik = 1 А/см2 | ik = 1мА/см2 | iа = 1мА/см2 | |
Платина гладкая | 0,1 | 0,02 | 0,7 |
Никель | 0,64 | 0,34 | 1,09 |
Железо | 0,7 | 0,33 | 1,07 |
Серебро | 0,95 | 0,4 | 0,97 |
Медь | 0,8 | 0,455 | 1,05 |
Олово | 1,24 | 0,86 | 1,21 |
Цинк | 1,24 | 0,89 | 1,75 |
Кадмий | 1,4 | 1,04 | ¾ |
Ртуть | 1,406 | 1,06 | 1,62 |
Свинец | 1,56 | 1,23 | 1,44 |
Графит | ¾ | 0,6 | 1,17 |
Таким образом, при выборе
Пользуясь
формулой Нернста, можно найти,
В тех случаях, когда перенапряжение электродной реакции невелико (что характерно для реакций восстановления многих металлов), скорость электролиза (сила тока) определяется диффузией, миграцией ионов в электрическом поле и перемешиванием раствора. Так как частицы, принимающие участие в реакциях, при достижении электрода мгновенно разряжаются, то их концентрация на поверхности электрода практически равна нулю. Из формулы же Нернста следует, что уменьшение концентрации окислителя приводит к смещению потенциала электрода в отрицательную сторону, а восстановителя в положительную. Если скорость электролиза ограничивается концентрационной поляризацией, то при увеличении напряжения быстро достигается предельное значение силы тока и ускорить электрохимическую реакцию повышением напряжения уже не удается. Дальнейшее повышение напряжения делает возможным протекание других электродных реакций, например разложение воды с выделением водорода и кислорода.
Концентрационная поляризация
7. Падение напряжения
на электролите.
Переносчиком
электричества в растворе
а для электролитов