Автор работы: Пользователь скрыл имя, 18 Марта 2011 в 18:47, реферат
Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности, двухатомных) от температуры. Согласно квантовой механике, энергия вращательного движения молекул и энергия колебаний атомов в молекуле могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии , то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются
7.3. Теплоемкость твердых тел
§ 1. Понятие
о квантовой теории теплоемкости.
Фононы
Квантовая статистика устранила трудности в объяснении зависимости теплоемкости газов (в частности, двухатомных) от температуры. Согласно квантовой механике, энергия вращательного движения молекул и энергия колебаний атомов в молекуле могут принимать лишь дискретные значения. Если энергия теплового движения значительно меньше разности энергий соседних уровней энергии , то при столкновении молекул вращательные и колебательные степени свободы практически не возбуждаются. Поэтому при низких температурах поведение двухатомного газа подобно одноатомному.
Так как разность между соседними вращательными уровнями энергии значительно меньше, чем между колебательными, т. е. , то с ростом температуры возбуждаются вначале вращательные степени свободы, в результате чего теплоемкость возрастает; при дальнейшем росте температуры возбуждаются и колебательные степени свободы и происходит дальнейший рост теплоемкости.
Функции распределения Ферми - Дирака для и заметно различаются (рис. 7.1) лишь в узкой области энергий (порядка ). Следовательно, в процессе нагревания металла участвует лишь незначительная часть всех электронов проводимости. Этим и объясняется отсутствие заметной разницы между теплоемкостями металлов и диэлектриков, что не могло быть объяснено классической теорией.
Как уже указывалось, классическая теория не смогла объяснить также зависимость теплоемкости твердых тел от температуры, а квантовая статистика решила эту задачу. Так, А. Эйнштейн, приближенно считая, что колебания атомов кристаллической решетки независимы (модель кристалла как совокупности независимых колеблющихся с одинаковой частотой гармонических осцилляторов), создал качественную квантовую теорию теплоемкости кристаллической решетки. Она впоследствии была развита П. Дебаем, который учел, что колебания атомов в кристаллической решетке не являются независимыми (рассмотрел непрерывный спектр частот гармонических осцилляторов).
Рассматривая непрерывный спектр частот осцилляторов, П. Дебай показал, что основной вклад в среднюю энергию квантового осциллятора вносят колебания низких частот, соответствующих упругим волнам. Поэтому тепловое возбуждение твердого тела можно описать в виде упругих волн, распространяющихся в кристалле. Согласно корпускулярно-волновому дуализму свойств вещества, упругим волнам в кристалле сопоставляют фононы, обладающие энергией . Фонон есть квант энергии звуковой волны (так как упругие волны — волны звуковые). Фононы являются квазичастицами - элементарными возбуждениями, ведущими себя подобно микрочастицам. Аналогично тому как квантование электромагнитного излучения привело к представлению о фотонах, квантование упругих волн привело к представлению о фононах.
Квазичастицы, в частности фононы, сильно отличаются от обычных частиц (например, электронов, протонов, фотонов), так как они связаны с коллективным движением многих частиц системы. Квазичастицы не могут возникать в вакууме, они существуют только в кристалле. Импульс фонона обладает своеобразным свойством: при столкновении фононов в кристалле их импульс может дискретными порциями передаваться кристаллической решетке - он при этом не сохраняется. Поэтому в случае фононов говорят о квазиимпульсе.
Энергия
кристаллической решетки
Применение
статистики Бозе-Эйнштейна к фононному
газу-газу из невзаимодействующих бозе-
Модель
квазичастиц - фононов - оказалась эффективной
для объяснения открытого П. Л. Капицей
явления сверхтекучести жидкого гелия.
Теория сверхтекучести, созданная (1941)
Л. Д. Ландау и развитая (1947) российским
ученым Н. Н. Боголюбовым (р. 1909), применена
впоследствии к явлению сверхпроводимости.