Теория большого взрыва. Современный анализ проблемы. Модель теории с точки зрения квантовой модели

Автор работы: Пользователь скрыл имя, 12 Февраля 2015 в 00:32, реферат

Описание работы

Проблемы зарождения и существования Вселенной занимали самого древнего человека. Небо, которое было доступно его обозрению, было для него очень интересно. Недаром астрономия считается одной из самых древних наук о природе. Не потерял интереса к изучению проблем космоса и современный человек, но он смотрит глубже, его уже интересует не просто выяснение вопроса, что есть Вселенная? Современные ученые ищут ответы на следующие вопросы:
а) Что было, когда Вселенная рождалась?
б) Как давно это было и как происходило?

Содержание работы

Введение
3

1.Теория большого взрыва
4
2. Современный анализ проблемы
17
3. Модель теории с точки зрения квантовой модели
29

Заключение
33
Список литературы

Файлы: 1 файл

ТБВ.docx

— 65.16 Кб (Скачать файл)

Другим важным параметром является температура. Вопрос о том, холодной» или «горячей» была материя в ту эпоху, долгое время оставался спорным. Решающие доказательства, что Вселенная была горячей, удалось получить в середине 60-х годов. В настоящее время большинство космологов считает, что материя в начале расширения Вселенной была не только сверхплотной, но и очень горячей, а теория рассматривающая физические процессы в начале расширения Вселенной получила название «теории горячей Вселенной».

Согласно этой теории, ранняя Вселенная представляла собой гигантский ускоритель «элементарных» частиц. Началом работы Вселенского ускорителя был Большой взрыв. Этот термин часто применяют современные космологи. Наблюдаемый разлет галактик и их скоплений – следствие Большого взрыва. Академик Я.Б. Зельдович назвал этот взрыв астрономическим, тем самым, подчеркнув его отличие от химического взрыва.

У обоих взрывов есть общие черты, например, в обоих случаях вещество после взрыва охлаждается при расширении, падает и его плотность. Но есть и существенный отличия. Главное состоит в том, что химический взрыв обусловлен разностью давлений во взрывающемся веществе и давлением в окружающей среде (воздухе). Эта разность давлений создает силу, сообщающую скорость частицам заряда взрывчатого вещества. В астрономическом взрыве подобной разности давлений нет. Астрономический взрыв не начался из какого-то определенного центра, распространяясь на все большие области, а произошел сразу во всем существовавшем тогда пространстве. Представить себе это очень трудно, тем более что «все пространство» в начале взрыва могло быть как конечным (теория замкнутого мира), так и бесконечным (теория открытого мира).

В теории космологии приято эволюцию вселенной разделять на 4 эры:

а) адронная эра (начальная фаза, характеризующаяся высокой температурой и плотностью вещества, состоящего из элементарных частиц – «адронов»);

б) лептонная эра (следующая фаза, характеризующаяся снижением энергии частиц и температуры вещества, состоящего из элементарных частиц «лептонов». Адроны распадаются в мюоны и мюонное нейтрино – образуется «нейтринное море»;

в) фотонная эра или эра излучения (характеризуется снижением температуры до 10 К, аннигиляцией электронов и позитронов, давление излучения полностью отделяет вещество от антивещества);

г) звездная эра (продолжительная эра вещества, эпоха преобладания частиц, продолжается со времени завершения Большого взрыва (примерно 300 000 лет назад) до наших дней.

В нулевой момент времени Вселенная возникла из сингулярности, то есть из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Пытаясь объяснить происхождение Вселенной, сторонники Большого взрыва сталкиваются с серьезной проблемой, поскольку исходное состояние Вселенной в разработанной ими модели не поддается математическому описанию. В их описаниях Вселенная в начале представляла собой точку пространства бесконечно малого объема, имевшую бесконечно большую плотность и температуру. Такое состояние вещества в принципе не может быть описано математически. На языке науки это явление получило название «сингулярности».

В течение первой миллионной доли секунды, когда температура значительно превышала 10 12 К (по некоторым оценкам до 10 14 К), а плотность была немыслимо велика, происходили неимоверно быстро сменяющие себя экзотические взаимодействия, недоступные пониманию в рамках современной физики. Мы можем лишь размышлять, каковы были эти первые мгновения, например, возможно, что четыре фундаментальные силы природы были слиты воедино. Есть основания полагать, что к концу первой миллионной доли секунды уже существовал первичный «бульон» богатых энергией («горячих») частиц излучения (фотонов) и частиц вещества. Иными словами материя Вселенной представляла собой электронно-позитронные пары (е– и е+); мюонами и антимюонами (м – и м +); нейтрино и антинейтрино, как электронными (v e, v e), так и мюонными (v m, v m) и тау-нейтрино (v t, v t); нуклонами (протонами и нейтронами) и электромагнитным излучением. Эта самовзаимодействующая масса находилась в состоянии так называемого теплового равновесия.

В те первые мгновения все имевшиеся частицы должны были непрерывно возникать (парами – частица и античастица) и аннигилировать. Это взаимное превращение частиц в излучение и обратно продолжалось до тез пор, пока плотность энергии фотонов превышала значение пороговой энергии образования частиц. Когда возраст Вселенной достиг одной сотой доли секунды, ее температура упала примерно до 10 11 К, став ниже порогового значения, при котором могут рождаться протоны и нейтроны, некоторые из этих частиц избежали аннигиляции – иначе в современной нам Вселенной не было бы вещества. Через 1 секунду после Большого взрыва температура понизилась до 10 10 К, и нейтрино перестали взаимодействовать с веществом. Вселенная стала практически «прозрачной» для нейтрино. Электроны и позитроны еще продолжали аннигилировать и возникать снова, но примерно через 10 секунд уровень плотности энергии излучения упал ниже и их порога, и огромное число электронов и позитронов превратилось в излучение катастрофического процесса взаимной аннигиляции. По окончанию этого процесса, однако, осталось определенное количество электронов, достаточное, чтобы, объединившись с протонами и нейтронами, дать начало тому количеству вещества, которое мы наблюдаем сегодня во Вселенной.

Существует два основных взгляда на процесс формирования галактик. Первый состоит в том, что в любой момент времени в расширяющейся смеси вещества и излучения могли существовать случайно распределенные области с плотностью выше средней. В результате сил тяготения эти области сначала отделились в виде очень протяженных сгустков вещества. В этих сгустках начался процесс фрагментации, приведший к образованию облаков меньших размеров, которые позднее превратились в скопления и отдельные галактики, наблюдаемые сегодня. Далее в этих меньших (по галактическим размерам) сгустках под действием сил тяготения в случайных неоднородностях плотности началось формирование звезд. Другая точка зрения дает другой сценарий: вначале из флуктуаций плотности в расширяющемся первичном шаре сформировались многочисленные (малые) галактики, которые с течением времени объединились в скопления, в сверхскопления и, возможно, в более крупные иерархические структуры.

Главным в споре этих двух взглядов является ответ на вопрос, имел ли процесс Большого взрыва вихревой (турбулентный) характер или протекал более гладко. Признаков турбулентности в крупномасштабной структуре сегодняшней Вселенной не наблюдается. Вселенная выглядит удивительно сглаженной в крупных масштабах, несмотря на некоторые отклонения, в целом далекие галактики и их скопления галактики распределены по всему небу равномерно, а степень изотропности фонового излучения также довольно высока. Все это заставляет признать, что Большой взрыв был безвихревым, упорядоченным процессом расширения.

В 1978 г., пытаясь найти обоснование для наблюдаемого соотношения фотонов и барионов (10 8 : 1) М. Рис высказал предположение, что фоновое излучение может быть результатом «эпидемии» образования массивных звезд, начавшейся сразу после отделения излучения от вещества и до того, как возраст Вселенной достиг 1 млрд. лет. Продолжительность жизни этих звезд не могла превышать 10 млн. лет, многим из них было суждено пройти стадию сверхновых и выбросить в пространство тяжелые химические элементы, которые частично собрались в крупицы твердого вещества, образовав облака межзвездной пыли. Эта пыль, нагретая излучением догалактических звезд, могла, в свою очередь, испускать инфракрасное излучение, которое в силу его красного смещения, вызванного расширением Вселенной, наблюдается сейчас как микроволновое фоновое излучение.

Эта точка зрения не получила широкого признания, но в 1979 г. Д.П. Вуди и П.Л. Ричардс из Калифорнийского университета опубликовали результаты наблюдений, указывающие на некоторые отклонения характеристик микроволнового фонового излучения от кривой излучения абсолютно черного тела. В том же году М. Роуэн-Робинсон, Дж. Негропонте и Дж. Силк (Колледж королевы Марии, Лондон) указали, что отклонения обнаруженные Вуди и Ричардсом, может быть объяснено излучением пылевых облаков, образовавшихся вслед за «эпидемией» массового формирования звезд, что соответствует теории М. Риса. Если эта новая теория соответствует истине, то это означает, что подавляющее количество всей массы Вселенной содержится  в невидимых остатках звезд первичного, догалактического, поколения и в настоящее время может находиться в массивных темных гало, окружающих яркие галактики, которые мы наблюдаем сегодня.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Современный анализ проблемы.

Теория Большого взрыва захватывает воображение и мало кого оставляет равнодушным. Создается впечатление, что она основана на фактическом материале и подкреплена математическими выкладками и поэтому большинству людей она кажется более приемлемой, чем религиозное объяснение возникновения Вселенной. Однако, по мнению ряда ученых-космологов рассматриваемая теория является лишь последней из целого ряда попыток объяснить зарождение Вселенной с позиций физического мировоззрения, согласно которому мир представляет собой порождение материи, функционирующей в строгом соответствии с законами физики.

Иерархичность устройства Природы заключается в том, что каждая ступень этой иерархической лестницы связана с другой – более высокой или более низкой – определенным, закономерным образом. Разрыва в действии законов природы не может и не должно быть. И если есть законы физики, которые действуют на уровне микромира, то такие же законы должны действовать и на уровне космическом. И наоборот.

Современная теоретическая физика совершенно опровергает это утверждение. С точки зрения современной науки на космическом уровне, казалось бы, выявляются эффекты, которые никак не соотносятся с уровнем микромира. И к подобным эффектам, в первую очередь, следует отнести вопрос, почему ночное небо темное. Вопрос этот принципиальный. Тот или иной вариант ответа на него уводит нас в диаметрально противоположные стороны понимания физики как таковой.

Возникновение самого вопроса связано с принятым космологическим принципом, зафиксированным экспериментально в ходе астрономических наблюдений и который гласит следующее.

В наблюдаемой Вселенной вещество и излучение распределены удивительно равномерно. Их распределение не зависит ни от направления наблюдения (изотропность), ни от расстояния от Земли (однородность).

В свете вопроса о причинах темноты нашего ночного неба космологический принцип в свое время был поставлен под сомнение. Дело в том, что однородность и изотропность распределения вещества и излучения в Космосе неизбежно приводят к мысли, что на каждом квадратном миллиметре (и вообще – на любой малой площади) небосвода при удалении от Земли по прямой линии нам будет попадаться бесчисленное количество звезд, которые мы почему-то не наблюдаем. Свет от этих далеких звезд должен заставлять светиться наше ночное небо. Однако свет этих звезд по каким-то причинам до нас не доходит, и ночное небо остается темным.

Этот парадокс в 1744 году описал швейцарский астроном де Шизо, а затем - независимо от него - в 1826 году немецкий астроном Г. Ольберс. Обнаружение этого парадокса поставило под сомнение вечность и бесконечность Вселенной.

Чтобы избавиться от своего парадокса эти астрономы предположили наличие в космическом пространстве непрозрачных туманностей, заслоняющих наиболее удаленные звезды и поглощающих от них свет. Но это было заблуждение, которое вскоре опровергли другие астрономы. Туманности от поглощенного свете разогрелись бы настолько, что сами стали бы источником света. Следовательно, либо свет от дальних звезд не приходит, так как этих звезд там нет, либо ученые недостаточно четко понимают природу света (фотона).

В определенном смысле – это точка бифуркации для космологии. Бифуркация означает буквально разветвление. Дальнейшее рассуждение о структуре и развитии Вселенной может вестись по-разному, в разных направлениях, принципиально отличающихся друг от друга. Все зависит от того, какие причины “исчезновения” света далеких звезд мы примем в качестве рабочих.

Итак, если “парадокс Ольберса” (такое название получила эта загадочная ситуация) справедлив, то тогда космологический принцип не является всеобщим, а Вселенная – имеет конечные размеры. Это одна точка зрения. Данная точка зрения, к сожалению, совпала с выводами общей теории относительности об искривлении пространства гравитацией и замкнутости пространства Вселенной в виде сферы. Далее мы проследим, как и в какой мере будет нарушаться космологический принцип, если возобладает эта точка зрения.

Следует заметить, что астрономические наблюдения до сих пор не дали оснований считать возможность нарушения космологического принципа. И мне представляется принципиально важным сохранение космологического принципа при любых вариантах рассуждений.

Если же принять возможным конечность времени существования фотона, тогда темнота ночного неба будет легко объяснена, а принцип однородности и изотропности космического пространства будет полностью сохранен для любой точки пространства Вселенной, а сама Вселенная при этом может быть неограниченно большой (бесконечной) в линейном смысле.

Именно по этим причинам я считаю “парадокс Ольберса” точкой бифуркации вообще для всей физической науки, а не только для решения космологических проблем: вопрос о природе фотона становится ключевым для понимания одновременно свойств вещества и космологических законов. От выбора варианта гипотезы для его разрешения дальнейшие рассуждения идут различными путями, никак не соприкасающимися друг с другом и дающими принципиально отличающиеся результаты.

В первом варианте гипотезы имеется существенный изъян, заключающийся как раз в нарушении космологического принципа. Если принять такую точку зрения (о конечности Вселенной), то тогда следовало бы положить, что по мере удаления от Земли расстояние между звездами неизбежно увеличивается, т.е. нарушается принцип однородности и изотропности одновременно. В этом случае, находясь в удаленных от Земли областях и всматриваясь в сторону Земли, мы обнаружили бы возрастание плотности и нарушение однородности Вселенной в этом направлении.

Поскольку космологический принцип желательно сохранить, следует положить, что первое предположение является ошибочным. Но в этом случае размеры Вселенной оказываются ограниченными. В этом случае космологический принцип будет нарушен в случае нашего нахождения на некоторой границе Вселенной, в которой начинается ограничение количества звездных систем вследствие ограниченности пространства Вселенной. Тогда всматриваясь в разные стороны того пространства, где мы будем находиться, мы обнаружим неоднородность и анизотропность Вселенной в разных направлениях ее обозрения. В этом случае мы обязаны будем положить, что космологический принцип – это частный случай, справедливый лишь для нашей планеты.

Информация о работе Теория большого взрыва. Современный анализ проблемы. Модель теории с точки зрения квантовой модели