Автор работы: Пользователь скрыл имя, 09 Сентября 2011 в 23:47, реферат
Понятие «элементарная частица» сформировалось в связи с установлением строения вещества на микроскопическом уровне. Обнаружение в начале 20-го века мельчайших носителей свойств вещества – атомов – позволило описать все известные вещества как комбинации конечного, хотя и достаточно большого, количества составляющих – атомов.
Введение 3
Исторические сведения 4
Характеристика элементарных частиц 5
Классификация элементарных частиц 8
Свойства элементарных частиц 10
Заключение 13
Список использованной литературы 15
Понятие
«элементарная частица» сформировалось
в связи с установлением
Выявления сложного строения атомов, оказавшихся построенными всего из трёх типов частиц (электронов и протонов и нейтронов в ядре), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать,
что цепочка составных частей материи заканчивается дискретными бесструктурными образованиями – элементарными частицами. Нельзя с уверенностью сказать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, долгое время считавшиеся элементарными, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Есть гипотеза о том, что существуют так называемые «геометрические кванты». Её смысл заключается в том, что на расстоянии 10ֿіі см силы взаимодействия настолько велики, что само пространство сворачивается в некие микрообъекты, напоминая губку, и меньших расстояний попросту не бывает. Эти шарики и представляют собой «геометрические кванты», или струны.
Сейчас термин «элементарные
частицы» используется в не
совсем точном значении, а включает
в себя группу мельчайших
Первая элементарная частица – электрон – была открыта Дж. Дж. Томсоном в 1897 году. Он установил, что так называемые катодные лучи образованы потоком мельчайших частиц, названных впоследствии электронами. В 1911 году Э.Резерфорд, пропуская б-частицы от естественного радиоактивного источника через тонкие фольги из разных веществ, выяснил, что положительный заряд в атомах сосредоточен в компактных образованиях – ядрах. В 1919 году обнаружил протоны – положительно заряженные частицы, с массой, в 1836,2 раза превышающей массу электрона – среди частиц, выбитых из атомных ядер. В 1932 году Дж. Чедвик открыл третью частицу, входящую в состав атома – нейтрон, изучая взаимодействия б-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не имеет заряда. М.Планк, предположив, что энергия абсолютно чёрного тела квантована, получил правильную формулу для спектра излучения (1900 год). Развивая идею Планка, Эйнштейн постулировал, что электромагнитное излучение в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существования фотона даны Р.Милликеном (1912-1915 года) и А.Комптоном (1922 год).
Открытие нейтрино – частицы, почти не взаимодействующей с веществом – ведёт своё начало от гипотезы В.Паули(1930 год), позволившей найти «невидимого вора» в процессах в-распада радиоактивных ядер (часть энергии исчезала неизвестно куда). Экспериментально существование нейтрино было подтверждено лишь в 1953 году Ф. Райнесом и К.Коуэном в США.
К настоящему времени открыто
около 350 элементарных частиц, различных
по своим характеристикам:
Каждая электронная частица, наряду со спецификой присущих ей взаимодействий, описывается набором дискретных значений определённых физических величин, или своими характеристиками. В ряде случаев эти дискретные значения выражаются через целые или дробные числа и некоторый общий множитель – единицу измерения; об этих числах говорят как о квантовых числах электронных частиц и задают только их, опуская единицы измерения.
Общими характеристиками всех элементарных частиц являются масса (m), время жизни (t), спин (J) и электрический заряд (Q). Пока нет достаточного понимания того, по какому закону распределены массы Э. ч. и существует ли для них какая-то единица измерения.
В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными, в пределах точности современных измерений, являются электрон (t > 5×1021 лет), протон (t > 2×1030 лет), фотон и нейтрино. К квазистабильным относят частицы, распадающиеся за счёт электромагнитных и слабых взаимодействий. Их времена жизни > 10-20 сек (для свободного нейтрона даже ~ 1000 сек). Резонансами называются элементарные частицы, распадающиеся за счёт сильных взаимодействий. Их характерные времена жизни 10-23-10-24 сек. В некоторых случаях распад тяжёлых резонансов (с массой ³ 3 Гэв) за счёт сильных взаимодействий оказывается подавленным и время жизни увеличивается до значений - ~10-20 сек.
Спин элементарной частицы является целым или полуцелым кратным от величины.
В этих единицах спин p- и К-мезонов равен 0, у протона, нейтрона и электрона J= 1/2, у фотона J = 1. Существуют частицы и с более высоким спином. Величина спина элементарной частицы определяет поведение ансамбля одинаковых (тождественных) частиц, или их статистику (В. Паули, 1940). Частицы полуцелого спина подчиняются Ферми – Дирака статистике (отсюда название фермионы), которая требует антисимметрии волновой функции системы относительно перестановки пары частиц (или нечётного числа пар) и, следовательно, «запрещает» двум частицам полуцелого спина находиться в одинаковом состоянии (Паули принцип). Частицы целого спина подчиняются Бозе – Эйнштейна статистике (отсюда название бозоны), которая требует симметрии волновой функции относительно перестановок частиц и допускает нахождение любого числа частиц в одном и том же состоянии. Статистические свойства элементарных частиц оказываются существенными в тех случаях, когда при рождении или распаде образуется несколько одинаковых частиц. Статистика Ферми – Дирака играет также исключительно важную роль в структуре ядер и определяет закономерности заполнения электронами атомных оболочек, лежащие в основе периодической системы элементов Д. И. Менделеева.
Электрические заряды изученных элементарных частиц являются целыми кратными от величины е "1,6×10-19 к, называются элементарным электрическим зарядом. У известных элементарных частиц Q = 0, ±1, ±2.
Помимо указанных величин элементарные частицы дополнительно характеризуются ещё рядом квантовых чисел, называются внутренними. Лептоны несут специфический лептонный заряд L двух типов: электронный (Le) и мюонный (Lm); Le = +1 для электрона и электронного нейтрино, Lm= +1 для отрицательного мюона и мюонного нейтрино. Тяжёлый лептон t; и связанное с ним нейтрино, по-видимому, являются носителями нового типа лептонного заряда Lt.
Для адронов L = 0, и это ещё одно проявление их отличия от лептонов. В свою очередь, значительные части адронов следует приписать особый барионный заряд В (|Е| = 1). Адроны с В = +1 образуют подгруппу барионов (сюда входят протон, нейтрон, гипероны, барионные резонансы), а адроны с В = 0 - подгруппу мезонов (p- и К-мезоны, бозонные резонансы). Название подгрупп адронов происходит от греческих слов barýs – тяжёлый и mésos – средний, что на начальном этапе исследований элементарных частиц отражало сравнительные величины масс известных тогда барионов и мезонов. Более поздние данные показали, что массы барионов и мезонов сопоставимы. Для лептонов В = 0. Для фотона В = 0 и L = 0.
Барионы и мезоны подразделяются на уже упоминавшиеся совокупности: обычных (нестранных) частиц (протон, нейтрон, p-мезоны), странных частиц (гипероны, К-мезоны) и очарованных частиц. Этому разделению отвечает наличие у адронов особых квантовых чисел: странности S и очарования (английское charm) Ch с допустимыми значениями: 151 = 0, 1, 2, 3 и |Ch| = 0, 1, 2, 3. Для обычных частиц S = 0 и Ch = 0, для странных частиц |S| ¹ 0, Ch = 0, для очарованных частиц |Ch| ¹ 0, а |S| = 0, 1, 2. Вместо странности часто используется квантовое число гиперзаряд Y = S + В, имеющее, по-видимому, более фундаментальное значение.
Уже первые исследования с обычными адронами выявили наличие среди них семейств частиц, близких по массе, с очень сходными свойствами по отношению к сильным взаимодействиям, но с различными значениями электрического заряда. Протон и нейтрон (нуклоны) были первым примером такого семейства. Позднее аналогичные семейства были обнаружены среди странных и (в 1976) среди очарованных адронов. Общность свойств частиц, входящих в такие семейства, является отражением существования у них одинакового значения специального квантового числа - изотопического спина I, принимающего, как и обычный спин, целые и полуцелые значения. Сами семейства обычно называются изотопическими мультиплетами.
Все частицы (в том числе неэлементарные и квазичастицы) делятся на бозоны (или бозе-частицы) и фермионы (или ферми-частицы). Бозонами называются частицы или квазичастицы, обладающие нулевым или целым спином. Бозоны подчиняются статистике Бозе-Эйнштейна (отсюда и происходит их название). К бозонам относятся: гипотетический гравитон (спин 2), фотон (спин 1), промежуточные векторные бозоны (спин 1), глюоны (спин 1), мезоны и мезонные резонансы, а также античастицы всех перечисленных частиц. Фермионами называются частицы или квазичастицы с полуцелым спином. Для них справедлив принцип Паули и они подчиняются статистике Ферми-Дирака. К фермионам относятся лептоны, барионы, барионные резонансы и кварки (спин Ѕ), а также соответствующие античастицы.
По времени жизни ф различают стабильные, квазистабильные и резонансные частицы или резонансы. Резонансными называют частицы, распадающиеся за счёт сильного взаимодействия со временем жизни 10ֿІі с. Нестабильные частицы, время жизни которых превышает 10ֿІє с, распадаются за счёт слабого или электромагнитного, но не за счёт сильного взаимодействия. Такие частицы называются квазистационарными. Время 10ֿІє с, ничтожное в обыденных масштабах, должно считаться большим, если его сравнивать с ядерным временем. Ядерное время – это время, которое требуется свету, чтобы пройти диаметр ядра (10ֿ№і см). За время 10 ֿІє с может совершиться много внутринуклонных процессов, поэтому частицы, названные здесь квазистабильными, в справочниках именуются просто стабильными. Впрочем, абсолютно стабильными пока можно считать только 12 частиц: фотон г, электрон e-, протон p+(?), электронное нe, мюоннное нм и таоннное нф нейтрино и соответствующие им античастицы – их распад на опыте не зарегистрирован.
В микромире каждой частице соответствует античастица. В некоторых случаях частица полностью тождественна со своей античастицей. В таком случае частицу называют истинно нейтральной. К ним относятся фотон г, р0-мезон, з0-мезон, J∕ ш-мезон, ипсилон-частица . Если же частица и античастица не совпадают, то массы, спины, изотопические спины, времена жизни у частицы и античастицы одинаковы, а прочие характеристики одинаковы по абсолютной величине, но противоположны по знаку. Так, электрон и протон отличаются от позитрона и антипротона прежде всего знаком электрического заряда. Нейтрон и антинейтрон различаются знаком магнитного момента. Лептонные заряды у лептонов и атилептонов, барионные у барионов и антибарионов различаются по знаку.
Понятия
частицы и античастицы
Также существует деление частиц на фотоны, лептоны и адроны. Адроны – большой класс элементарных частиц, участвуют во всех видах взаимодействий. В зависимости от значения спина, адроны, в свою очередь, делятся на мезоны и барионы. Мезоны – частицы с нулевым спином, барионы – со спином 1/2(у омега-гиперона - 3/2). Лептоны – частицы, участвующие в слабом и электромагнитном взаимодействиях. Спин лептонов равен 1/2.
Когда
заряженные частицы
Исследуя реакции по
Основываясь на этой гипотезе,
Д.Д.Иваненко и И.Е.Тамм
Информация о работе Свойства и классификация элементарных частиц