Стабилизаторы напряжения

Автор работы: Пользователь скрыл имя, 14 Марта 2011 в 13:22, реферат

Описание работы

СТ характеризуются следующими параметрами (рис. 1, а): максимальное (оно же номинальное) выходное напряжение U2 mах , диапазон его регулирования и допустимая относительная нестабильность ; максимальный (он же номинальный) ток IН нагрузки и диапазон его изменений IН (обычно принимают IН min = 0 и IН = IН max , иначе СТ может выйти из строя при холостом ходе или в моменты включения при индуктивном характере нагрузки); выходное сопротивление ; коэффициент стабилизации коэффициент полезного действия (U1 ном , I1 ном – номинальные входные напряжение и ток). Временной (температурный) дрейф характеризуют абсолютным либо относительным изменением выходного напряжения за определенное время (в определенном диапазоне температур).

Файлы: 1 файл

Ст.doc

— 1.06 Мб (Скачать файл)

     Министерство науки  и образования Республики Казахстан

     Костанайский  Государственный Университет 

     им. А. Байтурсынова   
 
 
 
 
 

     РЕФЕРАТ

     На тему: 

     «Стабилизаторы напряжения» 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     Костанай 2011

 

      СТ характеризуются следующими параметрами (рис. 1, а): максимальное (оно же номинальное) выходное напряжение U2 mах , диапазон его регулирования и допустимая относительная нестабильность ; максимальный (он же номинальный) ток IН нагрузки и диапазон его изменений DIН (обычно принимают IН min = 0 и DIН = IН max , иначе СТ может выйти из строя при холостом ходе или в моменты включения при индуктивном характере нагрузки); выходное сопротивление ; коэффициент стабилизации коэффициент полезного действия (U1 ном , I1 ном – номинальные входные напряжение и ток). Временной (температурный) дрейф характеризуют абсолютным либо относительным изменением выходного напряжения за определенное время (в определенном диапазоне температур).

       

     а

     

     б

     Рис. 1. Функциональные схемы

     cтабилизатров напряжения:

     а – общая; б – параллельного типа

     СТ бывают параллельного и последовательного типов. Параллельный СТ (рис.1, б) содержит регулирующий 1 и опорный 3 элементы, сравнивающий и усилительный элемент 2. В нем при пренебрежении током через внутреннее сопротивление Ri элемента 1 выполняется условие , откуда [4] 

      ,(1) 

     где DIУ , DIР , DIН , DU1 , DU2 – приращения (изменения) соответственно токов сравнивающего, регулирующего элементов и нагрузки, входного и выходного напряжений.

     В реальных СТ IУ << IР. С учетом этого при DU1 = DU2 = 0 (неизменное входное и идеальная стабилизация выходного напряжений) следует DIР = – DIН , т.е. токи нагрузки и регулирующего элементов изменяются противоположно. Если же IН = const, то – изменение тока прямо пропорционально приращению напряжения U1. Из этого вытекает, что минимальный ток IР min регулирующего элемента соответствует максимальному току IН max нагрузки и минимальному входному напряжению U1 min . Тогда при

      .

     Очевидно, IР ном >> IР min, если сопротивление R0 СТ мало. Максимальный ток IР max , по которому подбирают элемент 1, соответствует режиму холостого хода и напряжению U1 max :

     

     где I1 min = IР min + IН max – минимальный входной ток параллельного СТ.

     Полагая DU1 = 0, подставляя и , приходим к выражению для выходного сопротивления СТ

      , (2)

     где – так называемое характеристическое сопротивление, равное выходному сопротивлению активной части СТ (при );

     RУ – суммарное входное сопротивление элемента 2 с учетом элемента 3;

     Ki – суммарный коэффициент усиления тока элементов 2 и 1.

     Часто . Тогда .

     Подставляя , и , можно получить

      . (3)

     В большинстве случаев , поэтому , т.е. для увеличения коэффициента стабилизации надо уменьшать характеристическое сопротивление. Это же необходимо для снижения выходного сопротивления. Требуемое достигают повышением коэффициента Ki усиления.

     На практике часто применяют простейший параллельный СТ напряжения, называемый параметрическим (рис. 2, а). Стабилитрон VD совмещает функции опорного и регулирующего элементов. Колебания напряжения U1 или тока IН приводят к изменению тока Iд = Iст , но напряжение U2 = Uст изменяется незначительно: Uст » const. Поэтому DU1 = DUR0 и , где DU1 , DUR0 , DIст – изменения соответственно напряжений U1, UR0 и тока Iст стабилитрона; R0 – балластное сопротивление (рис. 2, в).

     

     в 

     Рис. 2. Параметрические

     стабилизаторы напряжения:

     а, б – схемы; в – характеристики

       

           а б 

     

     Для рассматриваемого диодного СТ справедливы соотношения (1 – 2) при Ki = 0 и

      ,

     где rд – дифференциальное сопротивление стабилитрона, который подбирают исходя из значений напряжения U2 и тока IН . Очевидно, при Ki = 0 = rд, т.е. в диодных СТ характеристическое сопротивление является величиной заданной. Соответственно и . Ток Iст min выбирают в пределах 2…3 мА для маломощных и 3…5 мА для мощных стабилитронов. Сопротивление rд , зависящее от тока Iст , принимают равным номинальному (среднему) значению. Исходя из допустимого тока Iст доп оценивают максимальный ток нагрузки.

     Диодные СТ просты и надежны, но их недостатками являются невозможность регулировки выходного напряжения и невысокий коэффициент стабилизации (порядка 15…50), особенно при больших токах нагрузки IН > Iст ном . Возможный способ увеличения параметра K – применение каскадных схем (рис. 2, б). Расчет такого СТ выполняется “справа налево”. Выходное сопротивление определяется стабилитроном VD2. Диодные СТ применяются в основном в качестве источников опорного напряжения в более мощных СТ и для питания слаботочных схем, например, цепей смещения. В этом случае удается обеспечить условие IН max £ Iст min , при котором стабильность может быть приемлемой. Температурный и временной дрейф параметрического СТ такой же, как у отдельного стабилитрона. В широком интервале температур дрейф напряжения U2 доходит до 10% и более, т.е. намного превышает нестабильность напряжения U1 и тока IН . Анализ показывает, что однокаскадный параллельный СТ (содержит однокаскадный регулирующий элемент) не имеет преимуществ перед диодным, а двухкаскадный (с двухкаскадным регулирующим элементом) уступает двухкаскадному последовательному СТ.

     Последовательный СТ (рис.3) напряжения содержит регулирующий 1 и опорный 3 элементы, сравнивающий и усилительный элемент 2. В нем выполняется условие (Ri – внутреннее сопротивление элемента 1), откуда для приращений

      . (4)

       

     Рис. 3. Функциональная схема стабилизатора напряжения последовательного типа

     В реальных СТ IУ << IН . С учетом этого при DU1 = DU2 = 0 следует DIР = DIН , т.е. ток регулирующего элемента повторяет изменение тока нагрузки. Если же IН = const, то – изменение тока элемента 1 противоположно изменению тока через сопротивление Ri, которым принципиально нельзя пренебрегать. Из этого следует, что в последовательном СТ максимальный ток IР max регулирующего элемента соответствует максимальному току IН max нагрузки и минимальному входному напряжению U1 min.: (часто с запасом принимают ). Последовательный СТ не может работать в режиме холостого хода (в этом случае IР < 0). Для нормального функционирования через элемент 1 должен протекать минимальный (остаточный) ток . Ток IН min обеспечивают подключением на выходе постоянного сопротивления (шунта). Тогда по отношению к внешней нагрузке холостой ход допустим, но под током IН max надо понимать сумму токов собственно нагрузки и шунта IШ = IН min . В рабочем режиме напряжение на регулирующем элементе UР = U1 – U2 . Но в момент включения (с учетом емкости на выходе) и при коротком замыкании UР = U1 , из-за чего регулирующий элемент выбирают из условия UР max = U1 max .

     Полагая в (3) DU1 = 0, и , имеем

      , (4)

     где параметры , RУ , Ki аналогичны параметрам параллельного СТ, а подставляя сюда же и те же DIР и DIУ , находим коэффициент стабилизации

      . (5)

     В последовательных СТ, как и в параллельных, . Поэтому . Из-за неидеальных свойств регулирующего элемента , и коэффициент стабилизации имеет конечное значение.

     Однокаскадный последовательный СТ и его малосигнальная эквивалентная схема приведены на рис. 4, а, б. Усилительная часть представлена транзистором VT, опорная – стабилитроном VD, стабилизированным напряжением Е0 и балластным сопротивлением R0 . По-существу, СТ представляет собой эмиттерный повторитель, потенциал базы которого стабилизирован, а напряжение коллекторного питания изменяется в широких пределах.

     Сравнивая схемы рис. 3 и рис. 4, а, б, устанавливаем: , , , = , где rЭ , rБ , , b – параметры транзистора VT в схеме с ОЭ; rд – дифференциальное сопротивление стабилитрона VD. Количественные расчеты показывают, что при средних значениях параметров транзисторов средней мощности = 5 кОм, rБ = 20 Ом, b = 30, IК = 0,25 А и rд = 10 Ом выходное сопротивление и коэффициент стабилизации примерно равны 1 Ом и 125 раз. Величина K приемлема, но Rвых сравнительно велико и ограничивает максимальный ток нагрузки в однокаскадном СТ.

     В рассматриваемом СТ напряжение Е0 предполагалось абсолютно постоянным. На практике диодный СТ питается от того же источника. Обозначив DЕ0 = h×DU1 (h < 1) и включив этот источник переменного напряжения последовательно с сопротивлением R0 , можно показать, что коэффициент стабилизации уменьшается в (1+ ) раз. Наиболее часто балластное сопротивление R0 подключают ко входу СТ напрямую, что резко снижает значение K. Действительно, в этом случае изменения выходного и опорного напряжений примерно одинаковы (изменением напряжения база – эмиттер транзистора VT пренебрегаем). Поэтому коэффициент стабилизации СТ близок к аналогичному опорной части, который по причине небольшого значения R0 (100…300 Ом) не превышает 10…20.

     Основной недостаток однокаскадного последовательного СТ – сравнительно большое выходное сопротивление. Лучшие свойства имеет двухкаскадный СТ (рис. 4, в), в котором транзистор VT1 является регулирующим элементом, а транзистор VT2 – сравнивающим и усилительным. В этом случае , , и = , где IК1, b1 – ток коллектора транзистора VT1 и коэффициент передачи его тока в схеме с ОЭ; Rвх2 , rБ2 , rЭ2 , b2 – входное сопротивление и параметры транзистора VT2; rд – дифференциальное сопротивление стабилитрона VD. Например, при IК2 = 10 мА, rБ2 = 50 Ом, b1 = b2 = 30 и rд =10 Ом имеем Rвых » 0,15 Ом. Выигрыш по сравнению с однокаскадной схемой значительный. Соответственно возрастает и коэффициент стабилизации: K » 1000.  

     

Информация о работе Стабилизаторы напряжения