Автор работы: Пользователь скрыл имя, 02 Ноября 2010 в 21:46, Не определен
Лекция
Лекция № 17
Современная физическая картина мира
1. Введение (в основном историческое).
2. Фундаментальные (элементарные ) частицы.
3. Стандартная космологическая модель.
1. Естественно -научное представление о мире восходит к Галилею и Ньютону. Окружающий нас мир состоит из частиц, связанных между собой силами. Законы классической механики Ньютона определяют, как движутся тела, вещество (совокупности частиц) в пространстве и времени под действием сил. При этом обнаружилось нечто удивительное: эти законы применимы как к очень большим, так и очень малым телам. Небесная механика, техническая механика (механика жидкостей и газов, гидравлика, сопротивление материалов, теория механизмов и машин и т.д.), теория теплоты были сформулированы на основе механики Ньютона. Ее успех привел к тому, что механика была принята как основа всех естественных наук. Предполагалось, что для объяснения явлений природы достаточно указать их механизм.
Ньютоновская картина мира
Событием, изменившим представление
о том, что реально в
Весь список фундаментальных составных частей вещества не исчерпывается только этими тремя частицами. К 60-м годам были открыты уже десятки частиц. Отличительное свойство, которое делало электроны, протоны и нейтроны непременными составными частями вещества, - их стабильность.
Отметим, что в те же годы была создана квантовая теория поля - новые представления, в которых частицы и поля стали выступать на совершенно равных правах в качестве двух разных проявлений одного объекта - квантованного поля. Применение методов квантовой механики для объяснения свойств поля было связано с преодолением трудностей и психологических - две формы материи - частицы и поля - представлялись с классической точки зрения совершенно различными сущностями. Квантовое поле представляет собой синтез понятий классического поля типа электромагнитного и поля вероятности квантовой механики. По современным представлениям оно является наиболее фундаментальной и универсальной формой материи, лежащей в основе всех ее проявлений. На смену как полям, так и частицам классической физики пришли единые физические объекты - квантованные поля. Что же касается взаимодействия, элементарным актом его на корпускулярном уровне является мгновенное и локальное превращение одних частиц в другие. Привычное взаимодействие в виде сил, действующих со стороны одной частицы на другую есть вторичный эффект, возникающий благодаря тому, что две частицы обмениваются в результате последовательных актов испускания и поглощения третьими частицами, вообще говоря, иного сорта. В релятивистской квантовой теории поля частицы могут рождаться и уничтожаться - совершенно так же, как создается и поглощается зарядами классическое электромагнитное поле. При этом заряженные частицы рождаются и поглощаются с обязательным сохранением полного заряда, и один из выводов теории - неизбежность существования античастиц. Дадим краткую характеристику других частиц. Фотон - частица, квант электромагнитного излучения. Масса и электрический заряд фотона равны нулю. Нейтрино - гипотезу об этой частице выдвинул Паули в начале 30-х годов для объяснения -распада. Она электрически нейтральна; если масса у нее есть, то она очень мала. Существует, как предполагают, по крайней мере три различных вида нейтрино. Мюон - отрицательно заряженная частица, примерно в 200 раз тяжелее электрона. Мюоны, электроны и нейтрино относятся к классу частиц, называемых лептонами. К ним же относится еще одна t-частица (1975 г.) (тау-лептон). К 60-м годам было открыто много нестабильных частиц, имеющих малое время жизни, подобных протону и нейтрону. Их назвали адронами - они принимают участие в ядерных взаимодействиях. В 1963 г. была высказана идея о том, что все адроны построены из некоторого числа действительно элементарных “кирпичиков”, которые Гелл-Манн назвал кварками. Заряд кварков может быть равным + 2/3 или - 1/3 от заряда электрона. Поиски свободных кварков велись очень тщательно, но безуспешно. Считается, что кварки не могут существовать в свободном состоянии: они “заперты” внутри адрона. В 1983 г. были открыты, предсказанные теоретически, промежуточные векторные бозоны ( и ) - сверхтяжелые двойники фотона - частицы, которые необходимы для объяснения взаимодействий типа -распада. Частицы, обеспечивающие взаимодействие между кварками, были названы глюонами.
2. В результате открытия электрона, протона и нейтрона вновь возник извечный вопрос о строении вещества, хотя суть его изменилась. Цель заключается теперь не в том, чтобы продолжить список этих частиц, а в другом: понять основополагающие принципы, которые определяют, почему природа - частицы, ядра, атомы, звезды,... - такова, какая она есть. Эволюция наших представлений о природе говорит о том, что изучение элементарных частиц, по-видимому, самый верный путь к пониманию фундаментальных законов в нашем мире. Подтверждается это и тем фактом, что изучение элементарных частиц привело к модели развития Вселенной на самых ранних этапах ее развития (Модель Большого Взрыва; Гамов,1948 год). Одни и те же физические представления необходимы для понимания и очень малого (микромир), и очень большого (Вселенная).
Каким образом возникла и как
устроена наша Вселенная?
а) Гравитационное взаимодействие действует между всеми частицами и имеет характер притяжения. Несмотря на свою исключительную слабость (атом водорода, удерживаемый лишь силами гравитации имел бы размеры порядка Вселенной) гравитационные силы играют определяющую роль в больших масштабах. Именно гравитация удерживает вместе основные структуры Вселенной. Она скрепляет звезды, удерживает планеты на орбитах, нас на Земле.
б) Электромагнитная сила удерживает электроны в атомах, соединяет атомы в молекулы.
в) Сильная (ядерная) сила, действует между адронами (мезоны, протоны, нейтроны). Эта сила не зависит от электрического заряда частиц. Радиус ее действия ~10-13 см. Сильное взаимодействие, связывая протоны и нейтроны, приводит к существованию большого числа различных атомных ядер, а следовательно атомов и химических элементов, необходимых для построения множества разнообразных молекул.
г) Слабая сила - ее действие также не зависит от электрического заряда. Она была введена для объяснения b-распада ядер. Это распад внутри ядра одного из протонов или нейтронов
или
p - протон; n - нейтрон; е- - электрон; е+ - позитрон; ve - электронное нейтрино; - электронное антинейтрино.
Слабая сила инициирует процесс горения звезд, создавая возможность для образования химических элементов. Если два протона в атомах водорода соударяются, то иногда один благодаря слабой силе преобразуется в нейтрон, испуская позитрон и нейтрино, а нейтрон и протон соединяются, образуя дейтрон (тяжелый водород). Вслед за этим идут другие, более быстро текущие ядерные реакции, определяемые сильным взаимодействием.
Четыре силы обеспечивают
О четырех
фундаментальных бозонах
Поколения | 1-е | 2-е | 3-е | Q | |
кварки | Верхние
нижние |
u
d |
c
s |
t
b |
+ 2/3
- 1/3 |
лептоны | Нейтрино
заряженные |
ve
e |
vm
m |
vt
t |
0
- 1 |
Примечание. Протоны и нейтроны состоят из кварков двух типов, u и d: p = uud, n = ddu.
В последнем столбце табл.1 указаны значения электрического заряда частицы данной строки. Названия и обозначения кварков происходят от английских слов: u-up, d-down, c-charm, s-strangeness, t-top (также truth), b-bottom (также beauty).
Итак, в основе физического мира образца
80-90-х годов находятся 17 “элементов”:
6 лептонов, 6 кварков, 4 векторных бозона,
1 гравитон.
3. В последние двадцать лет происходит слияние физики элементарных частиц и космологии в одну область фундаментальной физики, лежащую в основе всех естественных наук.
В развитии космологии ХХ века
было два важнейших этапа.