Автор работы: Пользователь скрыл имя, 24 Февраля 2011 в 17:41, реферат
Явление радиоактивности, или спонтанного распада ядер, была открыта французским физиком А. Беккерелем в 1896 г. Он обнаружил, что уран и его соединения испускают лучи или частицы, проникающие сквозь непрозрачные тела и способные засвечивать фотопластинку, Беккерель установил, что интенсивность излучения пропорциональна только концентрации урана и не зависит от внешних условий (температура, давление) и от того, находится ли уран в каких-либо химических соединениях.
1.Введения
2. Радиоактивность
3.Ядерные реакторы
4.Инженерные аспекты термоядерного реактора
5.Ядерная реакция. Ядерная энергетика.
6.Гамма-излучения
7.Атомный реактор
8.Принципы построения атомной энергетики
9.Ядерный синтез завтра
10 . Вывод
11.Список литературы
Криопанели инжекторов охлаждаются жидким гелием и предназначены для поглощения газов, что позволяет поддерживать достаточную скорость откачки при относительно высоком разрежении.
Вакуумная система
обеспечивает откачку гелия, водорода
и примесей из полости дивертора
или из окружающего плазму пространства
в процессе работы реактора, а также
из рабочей камеры в паузах между
импульсами. Чтобы откачиваемый тритий
не выбрасывался в окружающую среду,
в системе необходимо предусмотреть
замкнутый контур с минимальным
количеством циркулирующего трития.
Откачивать газ можно турбомолекулярными
насосами, производительность которых
должна несколько превышать
Система энергопитания
существенно зависит от режима работы
реактора. Она заметно проще для
токамака, работающего в непрерывном
режиме. При работе в импульсном
режиме целесообразно использовать
комбинированную систему
Бланкет реактора расположен
за первой стенкой рабочей камеры
и предназначен для захвата нейтронов,
образующихся в DT-реакции, воспроизводства
"сгоревшего" трития и превращения
энергии нейтронов в тепловую
энергию. В гибридном термоядерном
реакторе бланкет служит также для
получения делящихся веществ. Бланкет
— это, по существу, то новое, что
отличает термоядерный реактор от обычной
термоядерной установки. Опыта по конструированию
и эксплуатации бланкета пока нет, поэтому
потребуются инженерно-
Тритиевый контур состоит из нескольких независимых узлов, обеспечивающих регенерацию откачиваемого из рабочей камеры газа, его хранение и подачу для подпитки плазмы, извлечение трития из бланкета и возврат его в систему питания, а также очистку от него отработанных газов и воздуха.
Защита реактора
делится на радиационную и биологическую.
Радиационная защита ослабляет поток
нейтронов и снижает
Биологическая защита совпадает со стенами реакторного зала и сделана из бетона толщиной 200 — 250 см. Она предохраняет окружающее пространство от излучения.
Системы дополнительного нагрева плазмы и подпитки ее топливом занимают значительное пространство вокруг реактора. Если нагрев плазмы осуществляется пучками быстрых атомов, то радиационная защита должна окружать весь инжектор, что неудобно для расположения оборудования в реакторном зале и обслуживания реактора. Системы нагрева токами высокой частоты в этом смысле привлекательнее, так как их устройства ввода (антенны) более компактны, а генераторы могут быть установлены за пределами реакторного зала. Исследования на токамаках и разработка конструкции антенн позволят сделать окончательный выбор системы нагрева плазмы.
Система управления — неотъемлемая часть термоядерного реактора. Как и в любом реакторе, из-за довольно высокого уровня радиоактивности в пространстве, окружающем реактор, управление и обслуживание в нем осуществляются дистанционно — как во время работы, так и в периоды остановок.
Источником радиоактивности в термоядерном реакторе являются, во-первых, тритий, распадающийся с испусканием электронов и низкоэнергетичных 7-квантов (период его полураспада составляет около 13 лет), а во-вторых, радиоактивные нуклиды, образующиеся при взаимодействии нейтронов с конструкционными материалами бланкета и рабочей камеры. Для наиболее распространенных из них (стали, сплавов молибдена и ниобия) активность достаточно велика, но все же примерно в 10—100 раз меньше, чем в ядерных реакторах аналогичной мощности. В перспективе в термоядерном реакторе предполагается использовать материалы, обладающие малой наведенной активностью, например алюминий и ванадий. Пока же термоядерный реактор-токамак проектируется с учетом дистанционного обслуживания, что предъявляет дополнительные требования к его конструкции. В частности, он будет состоять из соединяемых между собой одинаковых секций, которые заполнят различными стандартными блоками (модулями). Это позволит в случае необходимости сравнительно просто заменять отдельные узлы с помощью специальных манипуляторов.
Ядерные реакции. Ядерная энергетика.
Атомное ядро
Атомное ядро характеризуется зарядом Ze, массой М, спином J, магнитным и электрическим квадрупольным моментом Q, определенным радиусом R, изотоническим спином Т и состоит из нуклонов - протонов и нейтронов.
Число нуклонов А в ядре называется массовым числом . Число Z называют зарядовым числом ядра или атомным номером. Поскольку Z определяет число протонов, а А - число нуклонов в ядре, то число нейронов в атомном ядре N=A-Z. Атомные ядра с одинаковыми Z, но различными А называются изотопами . В среднем на каждое значение Z приходится около трех стабильных изотопов. Например, 28 Si, 29 Si, 30 Si являются стабильными изотопами ядра Si. Кроме стабильных изотопов, большинство элементов имеют и нестабильные изотопы, для которых характерно ограниченное время жизни.
Ядра с одинаковым массовым числом А называются изобарами , а с одинаковым числом нейтронов- изотонами .
Все атомные ядра разделяются на стабильные и нестабильные. Свойства стабильных ядер остаются неизменными неограниченно долго. Нестабильные же ядра испытывают различного рода превращения .
Экспериментальные измерения масс атомных ядер, выполненные с большой точностью, показывают, что масса ядра всегда меньше суммы масс составляющих его нуклонов.
Энергия связи - это энергия, которую необходимо затратить, чтобы разделить ядро на составляющие его нуклоны.
Энергия связи, отнесенная к массовому числу А, называется средней энергией связи нуклона в атомном ядре (энергия связи на один нуклон).
Энергия связи приблизительно постоянна для всех стабильных ядер и примерно равна 8 МэВ. Исключением является область легких ядер, где средняя энергия связи растет от нуля (А=1) до 8 МэВ для ядра 12 С.
Аналогично энергия связи на один нуклон можно ввести энергию связи ядра относительно других составных его частей.
В отличие от средней
энергии связи нуклонов количество
энергии связи нейрона и
Часто вместо энергии связи используют величину, называемую дефектом массы и равную разности масс и массового числа атомного ядра.
Гамма-Излучение
Гамма-излучение
– это коротковолновое
Гамма- излучение
возникает при распадах радиоактивных
ядер, элементарных частиц, при аннигиляции
пар частицы-античастица, а также
при прохождении быстрых
Гамма-излучение, сопровождающее распад радиоактивных ядер, испускается при переходах ядра из более возбужденного энергетического состояния в менее возбужденное или в основное. Энергия γ – кванта равна разности энергий Δε ρ остояний, между которыми происходит переход.
Возбужденное состояние
Е2
hν
Основное состояние ядра Е1
Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (~10 -2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося π 0 - мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма –излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.
В межзвёзном пространстве
гамма-излучение может
Аналогичное явление может иметь место в земных условиях при столновении электронов большой энергии, получаемых на ускорителях, с фотонами видимого света в интенсивных пучках света, создаваемых лазерами. Электрон передает энергию световому фотону, который превращается в γ-квант. Таким образом, можно на практике превращать отдельные фотоны света в кванты гамма-излучения высокой энергии.
Гамма-излучение
обладает большой проникающей
При комптон-эффекте
происходит рассеяние γ-кванта на одном
из электронов, слабо связанных в
атоме. В отличие от фотоэффекта,
при комптон-эффекте γ-квант не
исчезает, а лишь изменяет энергию (
длинну волны ) и направление распрастранения.
Узкий пучок гамма-лучей в
Если жнергия γ-кванта
превышает 1,02 Мэв, становится возможным
процесс образования электрон-