Автор работы: Пользователь скрыл имя, 19 Декабря 2011 в 14:26, реферат
Электроэнергия — физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Основной единицей измерения выработки и потребления электрической энергии служит киловатт-час (и кратные ему единицы). Для более точного описания используются такие параметры, как напряжение, частота и количество фаз (для переменного тока), номинальный и максимальный электрический ток.
1 Электроэнергия. 2
2 Производство электроэнергии. 2
2.1 Генерация электроэнергии 2
2.2 Гидроэлектростанции. 2
3 Альтернативные источники электроэнергии. 4
3.1 Ветровая энергия. 4
4 Передача электроэнергии. 6
4.1 Возникновение проблемы передачи электроэнергии. 6
4.2 Причины потери электроэнергии при передаче. 6
4.3 Решение проблемы. Проект “Лауфен-Франкфурт”. 7
4.4 Способ передачи электроэнергии “Лауфен-Франкфурт” 8
Производство и передача эклектроэнергии на расстоянии.
Оглавление
1 Электроэнергия. 2
2 Производство электроэнергии. 2
2.1 Генерация электроэнергии 2
2.2 Гидроэлектростанции. 2
3 Альтернативные источники электроэнергии. 4
3.1 Ветровая энергия. 4
4 Передача электроэнергии. 6
4.1 Возникновение проблемы передачи электроэнергии. 6
4.2 Причины потери электроэнергии при передаче. 6
4.3 Решение проблемы. Проект “Лауфен-Франкфурт”. 7
4.4 Способ передачи электроэнергии “Лауфен-Франкфурт” 8
Электроэнергия — физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Основной единицей измерения выработки и потребления электрической энергии служит киловатт-час (и кратные ему единицы). Для более точного описания используются такие параметры, как напряжение, частота и количество фаз (для переменного тока), номинальный и максимальный электрический ток.
Электрическая энергия является также товаром, который приобретают участники оптового рынка (энергосбытовые компании и крупные потребители-участники опта) у генерирующих компаний и потребители электрической энергии на розничном рынке у энергосбытовых компаний. Цена на электрическую энергию выражается в рублях и копейках за потребленный киловатт-час (коп/кВт·ч, руб/кВт·ч) либо в рублях за тысячу киловатт-часов (руб/тыс кВт·ч). Последнее выражение цены используется обычно на оптовом рынке.
Генерация электроэнергии — это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:
Гидроэлектрическая станция, гидроэлектростанция (ГЭС), комплекс
сооружений и оборудования, посредством которых энергия потока воды
преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи
гидротехнических сооружений, обеспечивающих необходимую концентрацию потока
воды и создание напора, и энергетического. оборудования, преобразующего
энергию движущейся под напором воды в механическую энергию вращения
которая, в свою очередь, преобразуется в электрическую энергию.
По схеме использования водных
ресурсов и концентрации
обычно подразделяют на русловые, приплотинные, деривационные с напорной и
безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. В
русловых и приплотинных ГЭС напор воды создаётся плотиной, перегораживающей
реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно
некоторое затопление долины реки. В случае сооружения двух плотин на том же
участке реки площадь затопления уменьшается. На равнинных реках наибольшая
экономически допустимая площадь затопления ограничивает высоту плотины.
Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на
горных реках, в узких сжатых долинах.
В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и
водосбросные сооружения (рис. 4). Состав гидротехнических сооружений
зависит от высоты напора и установленной мощности. У русловой ГЭС здание с
размещенными в нём гидроагрегатами служит продолжением плотины и вместе с
ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает
верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры
гидротурбин своими входными сечениями закладываются под уровнем верхнего
бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего
бьефа.
В соответствии с назначением гидроузла в его состав могут входить
судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные
сооружения для ирригации и водоснабжения. В русловых ГЭС иногда
единственным сооружением, пропускающим воду, является здание ГЭС. В этих
случаях полезно используемая вода последовательно проходит входное сечение
с мусорозадерживающими решётками, спиральную камеру, гидротурбину,
отсасывающую трубу, а по специальным водоводам между соседними турбинными
камерами производится сброс паводковых расходов реки. Для русловых ГЭС
характерны напоры до 30—40 м, к простейшим русловым ГЭС относятся также
ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных
реках основное русло перекрывается земляной плотиной, к которой примыкает
бетонная
водосливная плотина и
типична для многих отечественных ГЭС на больших равнинных реках. Волжская
ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций руслового типа.
При более высоких напорах
оказывается нецелесообразным
здание ГЭС гидростатичное давление воды. В этом случае применяется тип
плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается
плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему
бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС
такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой,
турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В
качестве дополнит, сооружений в состав узла могут входить судоходные
сооружения и рыбоходы, а также дополнительные водосбросы Примером подобного
типа станций на многоводной реке служит Братская ГЭС на реке Ангара.
Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения
производства электроэнергии и мощности ГЭС непрерывно растут вследствие
строительства новых крупных электростанций. В 1969 в мире насчитывалось
свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше,
причём 16 из них — на территории бывшего Советского Союза.
Важнейшая особенность
топливно-энергетическими ресурсами — их непрерывная возобновляемость.
Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость
вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на
значительные, удельные капиталовложения на 1 квт установленной мощности и
продолжительные сроки строительства, придавалось и придаётся большое
значение, особенно когда это связано с размещением электроёмких
производств.
Альтернативная энергетика. К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
Огромна энергия движущихся воздушных масс. Запасы энергии ветра более
чем в сто раз превышают запасы гидроэнергии всех рек планеты. Постоянно и
повсюду на земле дуют ветры – от легкого ветерка, несущего желанную
прохладу в летний зной, до могучих ураганов, приносящих неисчислимый урон и
разрушения. Всегда неспокоен воздушный океан, на дне которого мы живем.
Ветры, дующие на просторах нашей страны, могли бы легко удовлетворить все
ее потребности в электроэнергии! Климатические условия позволяют развивать
ветроэнергетику на огромной территории – от наших западных границ до
берегов Енисея. Богаты энергией ветра северные районы страны вдоль
Информация о работе Производство и передача эклектроэнергии на расстоянии