Применение звуковых волн

Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 16:58, реферат

Описание работы

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д. При этом опять имеется в виду слуховое восприятие звука.Музыкальная акустика исследует музыкальные инструменты и условия их наилучшего звучания.Физическая акустика занимается изучением самих звуковых колебаний, а за последнее время охватила и колебания, лежащие за пределами слышимости (ультраакустика).

Содержание работы

1. Введение………………………………………………….

2. Звуковые волны…………………………………………..

2.1. Акустика……………………………….. …..

2.2. Звукообработка …………………………….

2.3. Радиолокации……………………………….

4. Заключение……………………………………………….

5. Библиография…………………….

Файлы: 1 файл

применение звуковых волн.doc

— 197.00 Кб (Скачать файл)

     Существуют 2 варианта этого метода. В первом (более простом) необходим только один приёмный канал связи с одной  антенной. Путём механической или  электронной коммутации соответствующих  цепей получают два положения диаграммы направленности антенны и вырабатывают сигнал ошибки, который управляет следящей системой. Образование сравниваемых сигналов реализуется последовательно (во времени). Во втором, называемым моноимпульсным методом (см. Моноимпульсная радиолокация), существуют 2 отдельных приёмных канала связи с 2 антеннами и образование 1-го и 2-го сигналов происходит одновременно. Моноимпульсный метод свободен от ошибок, вызываемых флуктуациями сигналов (неизбежными в первом варианте).

     В РЛС СМ диапазона волн первый вариант  пеленгации реализуется при коническом сканировании, т. е. при вращении радиолуча, отклоненного относительно оси зеркала  антенны (равносигнального направления). Синхронно с вращением луча вырабатываются 2 ортогональных напряжения, используемых для коммутации (на выходе тракта сигнала) фазовых детекторов с целью выделения сигнала ошибки. Во втором варианте одновременно существуют 4 радиолуча и 2 сигнала ошибки (от каждой из ортогональных пар лучей).

     Кроме метода сравнения, также применяется  амплитудный метод анализа огибающей  принимаемых сигналов, позволяющий  получить примерно такую же точность пеленгации при одновременном обзоре узким лучом сектора, в котором может находиться несколько целей.

     Методы  разнесённого приёма позволяют достигнуть высокой точности пеленгации путём  измерения разности времени прихода  сигналов. В зависимости от вида принимаемых сигналов такое измерение  может производиться импульсным, корреляционным и фазовым способами.

     Большое развитие в Р. получил фазовый  способ пеленгации, основанный на измерении  разности фаз высокочастотных колебаний, принимаемых антеннами, разнесёнными на определённое расстояние, называемое базой. Его достоинство — высокая точность, достигаемая главным образом необходимым увеличением базы. Метод свободен от погрешностей, вызываемых флуктуациями сигнала, общего (по амплитуде) для каналов фазовой системы. При преобразовании радиочастоты в промежуточную (более низкую) частоту в супергетеродинном радиоприёмнике разность фаз сохраняется неизменной, и её измерение с точностью ~ 1° не представляет технических трудностей. При реализации этого метода важно сохранять идентичность и стабильность фазовых характеристик отдельных приёмных каналов, пропускающих колебания, разность фаз которых измеряется, а также поддерживать постоянство частоты принимаемых волн и базы (или осуществлять специальный контроль за их изменением).

     Фазовый метод весьма удобен и для точного  измерения угловой скорости излучающего  объекта. Применяя увеличенную базу, можно во много раз повысить чувствительность системы к изменению угловых  координат, получая измеримые разности фаз колебаний при ничтожных угловых перемещениях объекта. Сложность измерения этими системами угловых координат и их производных обусловлена многоканальностью их структуры, жёсткими требованиями к фазовым характеристикам каналов, необходимостью использовать для автоматизации обработки данных ЦВМ с высокой производительностью.

     Развитие  фазовых методов измерения угловых  координат и их производных в  Р. было использовано в радиоастрономии, где получили применение интерферометры со сверхдлинной базой (порядка нескольких тысяч км);с их помощью достигают углового разрешения порядка тысячной доли угловой секунды.

     Большое значение в Р. имеет метод селекции движущихся целей — обнаружения  отражённых целями сигналов, маскируемых радиоволнами, отражёнными от местных предметов — зданий, холмов, леса (при наблюдении низколетящих самолётов и снарядов или объектов, движущихся по земле), либо от волнующегося моря (при наблюдении перископов подводных лодок), либо от "облака" пассивных дипольных помех (при наблюдении воздушных объектов) и т.д. При этом методе, называемом также когерентно-импульсным, фаза излученных радиоволн запоминается с тем, чтобы при приёме сигнала, отражённого от объекта, по мере движения объекта можно было фиксировать изменение разности фаз между принятым и посланным сигналами; для неподвижного или малоподвижного фона помех изменения разности фаз в соседних периодах повторений импульсов близки к нулю, и при помощи устройств компенсации можно эти сигналы подавить, пропустив на выход РЛС только сигналы от движущихся объектов. Известны 2 способа реализации такого метода: с передатчиком (например, на клистроне, рис. 5), фаза колебаний в котором может управляться, и с передатчиком (например, на магнетроне, рис. 6), фаза колебаний которого от посылки к посылке импульсного сигнала случайна. В последнем случае фаза СВЧ колебаний магнетрона запоминается путём принудительного фазирования когерентного гетеродина приёмника при каждой посылке зондирующего сигнала.

     Методы  оптимальной обработки сигналов (в т. н. когерентных РЛС) позволили получать высокую угловую разрешающую способность у РЛС, движущихся относительно объектов (в т. ч. даже если размеры антенны сравнительно невелики, т. е. при широком радиолуче). Так, для картографирования местности был разработан метод бокового обзора с синтезированным раскрывом антенны. В РЛС, использующих этот метод, антенна, вытянутая вдоль пути летательного аппарата (ЛА), принимает от каждой элементарной площадки местности сигналы, различающиеся временем запаздывания (в связи с перемещением ЛА) и частотой Доплера. Т. к. при оптимальной обработке сигналы запоминаются и суммируются с соответствующими фазовыми сдвигами, то можно получить эффект синфазного сложения сигналов, подобно тому как это происходило бы при неподвижной синфазной антенне с эквивалентным размером D вдоль линии пути, определяемым перемещением Л А за время когерентного накопления сигнала Т:

     D = uT,

     где u — скорость перемещения ЛА. Вследствие эффекта Доплера изменение частоты  колебаний Df для элементов поверхности, разнесённых на ширину радиолуча q =lld (где l — длина волны, d — диаметр или сторона раскрыва антенны), равно

     

     Следовательно, после оптимальной обработки сигнала длительность сжатого импульса t будет равна

      '

     что соответствует предельно достижимой продольной разрешающей способности  вдоль линии пути, равной d =tu (или 1/2d, если та же бортовая антенна используется не только для приёма, но и для облучения и обеспечивает т. о. удвоение фазовых сдвигов отражённых колебаний).

     Лит.: Теоретические основы радиолокации, под ред. В. Е. Дулевича, М., 1964; Современная радиолокация, пер. с англ., М., 1969; Теоретические основы радиолокации, под ред. Я. Д. Ширмана, М., 1970; Вопросы статистической теории радиолокации, под ред. Г. П. Тартаковского, т. 1—2, М., 1973—74.

     Обработка звука бывает разноплановой  и зависит от целей, которые вы преследуете. Это может быть подавление шумов, наложение звуковых фильтров, добавление реверберации или дилея, выведение на передний план определённых частот и т.п. Об этом мы и поговорим…

     Наиболее  необходимой и практически повсеместно используемой процедурой является подавление шумов. Шумы могут быть как внешними, случайно записанными на микрофон фоновыми звуками в помещении с плохой звукоизоляцией, так и внутрисистемными, возникшими вследствие плохого экранирования шнуров и прочего звукозаписывающего оборудования. Шумы имеют свои частоты, диапазон которых сравнительно узок. Это позволяет подавлять их путём простой эквализации, то есть – убирать частоты, на которых больше всего шума и меньше всего нужных звуков. Запись, на которой шумы занимают сравнительно небольшой диапазон, не соприкасающийся с диапазоном других звуков, считается чистой. Запись, на которой шумы звучат почти на всех частотах, считается грязной, так как их практически невозможно подавить без ущерба для нужных звуков.

       
Подавление шума с помощью плагина Noise Reduction в редакторе Sound Forge

     Реверберация считается вторым по востребованности шагом в обработке звука. Реверберация – это постепенное затухание звука, например, в большом помещении с хорошей акустикой. При небольшой продолжительности она добавляет вокалу или сольным инструментам глубину и выразительность звучания, поэтому её используют довольно часто. В отличие от простого эха, которое просто повторяет звук несколько раз, при этом, затихая, реверберация прогрессивно меняет соотношение частот повторяемого звука, что может создавать самые разнообразные эффекты.

     После реверберации по популярности, пожалуй, стоят дилей-эффекты. Или попросту задержки звука. Это может быть как  обычное эхо любой частоты  затухания, так и более изысканные дилеи. Особенно дилей может понадобиться при обработке моно-звука и  превращении его в псевдостерео. Для этого производится совсем незначительная задержка звука в одном из каналов. При этом одному каналу желательно добавить немного «сухости» (средних частот). Тогда бывший моно-звук начинает звучать в разных каналах и чуть-чуть по-разному, что и создаёт эффект стерео.

     Если  прибавить немного высоких и  средних частот и совсем не использовать реверберации и дилея, то создаётся  популярный в последнее время  «эффект присутствия», как будто  вокалист поёт прямо в вашей комнате.

     Фильтры – это эквализационные схемы, которые накладываются на записанный звук. Фильтры бывают статические и динамические. Статические фильтры просто убирают некоторые частоты трека, добавляя другие, а динамические постоянно меняют соотношение частот по определённой круговой схеме, из-за чего звук кажется «плавающим».

     Forever, 21.02.2008

     5. Заключение: 

     Человек живет в океане звука, он обменивается информацией с помощью звука, воспринимает ее от окружающих его  людей. Поэтому знать основные характеристики звука, его подвиды и их использование просто необходимо. Использование звуковых и ультра звуковых волн находит все большее применение в жизни человека. Их используют в медицине и технике, на их использовании основаны многие приборы, особенно для исследования морей и океанов. Где из – за сильного поглощения радиоволн звуковые и ультра звуковые колебания есть единственным способ передачи информации.

     Как было сказано выше человек живет  в океане звука и нам также  не нужно забывать и о чистоте  этого океана. Сильные шумы опасны для здоровья человека и могут привести к сильным головным болям, расстройству координации движения. Поэтому нужно с уважением относится к столь сложному и интересному явлению, каким есть звук.

     6. Библиография: 

     1. Дущенко В. П., Кучерук И. М.  «Общая физика.» –М.: «Высшая школа»,2005 – 430 с.

     2. Исакович М. А., «Общая акустика.»  – М.: «Наука»,2006 – 495 с.

     3. Кухлинг Х., «Справочник по физике»:  Пер. с нем. – М.: «Мир»,2006 –  520 с.

     4. Лепендин Л. Ф., «Акустика.» –  М.: «Высшая школа»,2007. – 448 с.

     Яворский  Б. М., Детлаф А. А., «Справочник по физике.» – М.: «Наука», 2008. – 846 с. 

 

     

Информация о работе Применение звуковых волн