Организация эксплуатации и диагностики состояния телекоммуникационных линий с технологией FTTx

Автор работы: Пользователь скрыл имя, 11 Января 2015 в 15:31, курсовая работа

Описание работы

Целью работы является изучение основ организации и эксплуатации линий FTTx и выявление положительных и отрицательных факторов влияния линий FTTx на предприятие. Таким образом, предметом работы является технология FTTx. Объект работы: ОАО «РОСТЕЛЕКОМ»- одна из крупнейших в России и Европе телекоммуникационных компаний национального масштаба, присутствующая во всех сегментах рынка услуг связи и охватывающая более 34 млн. домохозяйств в России.

Файлы: 1 файл

Bondarenko_Yury.doc

— 548.00 Кб (Скачать файл)

Рис.2 Архитектура PON сети  

Для передачи прямого и обратного каналов используется одно оптическое волокно, полоса пропускания которого динамически распределяется между абонентами, или два волокна в случае резервирования. Нисходящий поток (downstream) от центрального узла к абонентам идет на длине волны 1490 нм и 1550 нм для видео. Восходящие потоки (upstream) от абонентов идут на длине волны 1310 нм с использованием протокола множественного доступа с временным разделением (TDMA).

Для построения PON используется топология «точка – многоточка» и сама сеть имеет древовидную структуру. Каждый волоконно-оптический сегмент подключается к одному приемопередатчику в центральном узле (в отличие от топологии «точка - точка», что также дает значительную экономию в стоимости оборудования. Один волоконно-оптический сегмент сети PON может охватывать до 32 абонентских узлов в радиусе до 20 км для технологий EPON / BPON и до 128  узлов в радиусе до 60 км для технологии GPON. Каждый абонентский узел рассчитан на обычный жилой дом или офисное здание и в свою очередь может охватывать сотни абонентов. Все абонентские узлы являются терминальными, и отключение или выход из строя одного либо нескольких абонентских узлов никак не влияет на работу остальных.

Центральный узел PON может иметь сетевые интерфейсы ATM, SDH (STM-1), Gigabit Ethernet для подключения к магистральным сетям. Абонентский узел может предоставлять сервисные интерфейсы 10/100Base-TX, FXS (2, 4, 8 и 16 портов для подключения аналоговых ТА), E1, цифровое видео, ATM (E3, DS3, STM-1c).

 

Таблица 1

Характеристика PON

 

APON

BPON

EPON (GEPON)

GPON

Стандарт

G.983

ITU G.983

IEEE 802.3ah

ITU G.984.6

Полоса пропускания для нисходящего потока

155 Мбит/с

622 Мбит/с

1,244 Гбит/с

2,488 Гбит/с

Полоса пропускания для восходящего потока

155 Мбит/с

155 Мбит/с

1,244 Гбит/с

1,244 Гбит/с

Емкость

 

32

32

64

Максимальная длина передачи, км

 

20

20

60

Затухание линии PON

   

26 дБ

22 дБ


 

 

Рис.3 Сравнение технологий

При тестировании сети PON оператора обычно волнуют два основных вопроса:

Реальное затухание в оптической линии между центральным узлом и абонентским устройством (действующим или готовящимся к подключению).

Местоположение проблемного участка, если реальное затухание в линии оказалось выше ожидаемого (расчетного или опорного).[19]

Для ответа на первый вопрос достаточно провести простые измерения с помощью оптического тестера. Второй вопрос более сложен и требует применения оптического рефлектометра (OTDR), а также определенного опыта расшифровки рефлектограмм.[13]

Как правило, желательно, чтобы все необходимые измерения могли проводиться на работающей сети PON без отключения абонентов (кроме, возможно, тестируемого). Такое тестирование осуществляется на нерабочей длине волны с применением дополнительных устройств (волновых мультиплексоров DWDM, фильтров), чтобы излучение измерительной аппаратуры не вносило помех в полезный сигнал. Как уже упоминалось, в сети PON для прямого канала (от центра к абонентам) используется длина волны 1490 или 1550 нм (для видео), для обратного  – 1310 нм. Для тестирования сети PON обычно используют длину волны 1625 нм.

Излучение измерительной аппаратуры (тестера, рефлектометра) вводится в волокно сразу после OLT  с использованием волнового мультиплексора (DWDM). Это излучение способно вызвать помехи на оптическом приемнике абонентского устройства, поэтому перед каждым абонентским устройством ONT необходимо установить фильтр. Для того чтобы можно было проводить тестирование без отключения сети, волновой мультиплексор и фильтры должны быть стационарно включены в оптический тракт.

Рис.4 Схема подключения волнового мультиплексора и фильтров к PON 

Для измерения затухания в оптической линии между OLT и ONT используется оптический тестер на 1625 нм. Передатчик тестера подключается к свободному концу волнового мультиплексора на OLT. Приемник тестера подключается к свободному концу волокна перед фильтром.  

 

Рис.5 Измерение затухания с отключением абонентского устройства  

Можно измерять затухание и без отключения абонентского устройства. Для этого на ONT нужно использовать не фильтр, а волновой мультиплексор, как на центральном узле, (см. Рис. 5). 

 

Рис.6 Измерение затухания без отключения абонентского устройства  

Затухание на длине волны 1625 нм несколько выше, чем на 1550 и 1490 нм (в среднем на 10%). Поэтому тестирование затухания на длине волны 1625 нм дает оценку сверху для затухания на рабочих длинах волн. Если эта оценка укладывается в допустимый бюджет (23 дБ), то затухание на рабочих длинах волн заведомо удовлетворяет требованиям по бюджету. Если затухание на длине волны 1625 нм превышает допустимое значение, то для точного определения затухания на рабочих длинах волн необходимо провести перерасчет на основе паспорта оптического кабеля. 

Измерение в PON с помощью оптического тестера позволяет получить реальное значение затухания на участке от OLT до ONT, но не дает ответа на вопрос, где находится проблемный участок, если это затухание оказалось выше ожидаемого (расчетного или опорного). Для локализации проблемного участка используется более сложное устройство – оптический рефлектометр (OTDR).[18]

Рефлектометр с тестовым модулем на 1625 нм подключается к свободному концу волнового мультиплексора на OLT. Излучение рефлектометра распространяется по дереву PON и за счет отражения на препятствиях и обратного рассеивания в оптическом волокне частично поступает обратно на вход рефлектометра. Таким образом, снимается рефлектограмма дерева PON – график затухания в линии в зависимости от расстояния. Каждый пик или скачок затухания на этом графике соответствует определенному элементу сети, либо событию в волокне.[14]

Рис.7 Снятие рефлектограммы дерева PON 

Методика тестирования сети PON с использованием рефлектометра заключается в следующем. После каждого изменения топологии сети (подключения нового абонента, замены сплиттера и т.п.) снимается опорная (эталонная) рефлектограмма,  соответствующая нормальному состоянию сети. При обнаружении проблем в сети (например, если затухание, измеренное оптическим тестером, оказалось выше расчетного) снимается новая рефлектограмма, которая сравнивается с опорной. Новые события на рефлектограмме локализуют местоположение проблемного участка. 

 

Рис.8 Анализ новых событий на рефлектограмме

 

 

 

С помощью рефлектометра можно вести мониторинг сети PON и обнаруживать деградации волокна еще до того, как возникнут проблемы. Для этого необходимо регулярно (например, раз в неделю) снимать рефлектограмму сети и сравнивать ее с опорной рефлектограммой. При появлении любых отклонений и тем более новых событий на рефлектограмме необходимо анализировать их возможные причины и при необходимости проводить адекватные профилактические мероприятия.

Основные преимущества технологии PON:

  • Экономия волокон. До 128 абонентов на одно волокно,  протяженность сети до 60 км.
  • Эффективное использование полосы пропускания оптического волокна.
  • Скорость до 2,488 Гбит/с по нисходящему потоку и 1,244 Гбит/с по восходящему.
  • Надежность. В промежуточных узлах дерева находятся только пассивные оптические разветвители, не требующие обслуживания.
  • Масштабируемость. Древовидная структура сети доступа дает возможность подключать новых абонентов самым экономичным способом.
  • Возможность резервирования как всех, так и отдельных абонентов.
  • Гибкость. Использование ATM в качестве транспорта позволяет предоставлять абонентам именно тот уровень сервиса, который им требуется.
  • данные по сети передаются в виде ячеек ATM.
  • возможны симметричный и асимметричный режимы работы.
  • измерения в FTTx PON / GPON сетях.

В процессе строительства сетей FTTx PON необходимо выполнять четыре основных измерения:

  • однонаправленное измерение потерь в кабельной секции перед сваркой;
  • двунаправленное измерение оптических возвратных потерь (ORL);
  • двунаправленное измерение оптических потерь между двумя оконечными точками;
  • двунаправленное снятие характеристик линии;
  • снятие рефлектограммы каждого участка оптической линии, включая сплиттеры.

В процессе ввода в эксплуатацию сетей FTTx PON необходимо выполнять два основных измерения:

  • измерение оптической мощности на выходе OLT;
  • измерение оптической мощности прямого и обратного потоков ветви сети PON при добавлении каждого нового ONT.[3]

1.1.2 APON

В середине 90-х годов общепринятой была точка зрения, что только протокол ATM способен гарантировать приемлемое качество услуг связи QoS между конечными абонентами. Поэтому FSAN, желая обеспечить транспорт мультисервисных услуг через сеть PON, выбрал за основу технологию ATM. В  результате в октябре 1998 года появился первый стандарт ITU-T G.983.1, базирующийся на транспорте ячеек ATM в дереве PON и получивший название APON (ATM PON).

Далее в течение нескольких лет появляется множество новых поправок и рекомендаций в серии G.983.x (x=1–7), скорость передачи увеличивается до 622 Мбит/c. В марте 2001 года появляется рекомендация G.983.3, закрепляющая понятие BPON (broadband PON) и добавляющая новые сущности в стандарт PON:

  • передача разнообразных приложений (голоса, видео, данные) — это фактически позволило производителям добавлять соответствующие интерфейсы на OLT для подключения к магистральной сети и на ONU для подключения к абонентам;
  • расширение спектрального диапазона — открывает возможность для дополнительных услуг на других длинах волн в условиях одного и того же дерева PON, например шировещательное телевидение на третьей длине волны (triple play).

За расширенным таким образом стандартом APON закрепляется название BPON (broadband PON).

APON сегодня допускает  динамическое распределение полосы DBA (dynamic bandwidth allocation) между различными приложениями и различными ONU и  рассчитан на предоставление как широкополосных, так и узкополосных услуг, табл.

Оборудование APON разных производителей поддерживает магистральные интерфейсы: SDH (STM-1), ATM (STM-1/4), Fast Ethernet, Gigabit Ethernet, видео (SDI PAL), и абонентские интерфейсы E1 (G.703), Ethernet 10/100Base-TX, телефония (FXS).

Из-за шировещательной природы прямого потока в PON и  потенциально существующей возможности несанкционированного доступа к данным со  стороны ONU, которому эти данные не адресованы, в APON предусмотрена возможность передачи данных в прямом потоке с использованием технологии шифрования на базе открытых ключей. Необходимости в шифровании обратного потока нет, поскольку OLT находится на территории оператора. [19]

Таблица 2

Сведения стандарта PON. Основные сведения стандарта PON G.983.1

Характеристика

Спецификация

Длина волны для нисходящего потока (потока к  абонентам)

базовая 1550 нм, наращивание в DWDM 15xx нм, C-band

Длина волны для восходящего потока

базовая 1310 нм, наращивание в DWDM 15xx нм, C-band

Суммарная скорость передачи для нисходящего потока

155 Мбит/c; 622 Мбит/c

Суммарная скорость передачи для восходящего потока

155 Мбит/c; 622 Мбит/c

Бюджет оптической линии учитывается при определении величины максимального расщепления сигнала на  сплиттере и максимального расстояния, дБ

Класс A: 5–20

Класс B: 10–25

Класс C: 15–30

Максимальный разброс потерь по оптическим путям, дБ

15

Поддерживаемые типы волокон и  требования к линии связи

ITU G.652 стандартное одномодовое волокно с длиной волны нулевой дисперсии в окрестности 1310 нм

Максимальное число абонентских узлов (ONU), которые можно подключить на одно волокно, идущее из центрального узла (OLT)

32

Максимальное расстояние OLT-ONU

20 км

Тип оптических соединителей PON

SC-PC или FC-PC с коэффициентом обратного отражения -35  дБ и лучше

Требования к оптическим компонентам (разветвители, соединители, де/мультиплексоры WDM)

Согласно рекомендации G.671


 

 1.1.3 EPON

Информация о работе Организация эксплуатации и диагностики состояния телекоммуникационных линий с технологией FTTx