Автор работы: Пользователь скрыл имя, 28 Июля 2013 в 14:20, лабораторная работа
Цель работы: определение момента инерции тела относительно оси проходящей через центр массы тела и проверка теоремы Штейнера.
Перечень приборов и принадлежностей:
1. трифилярный подвес
2. набор тел (2 цилиндра);
3. секундомер;
5. линейка.
Федеральное государственное бюджетное образование
учреждение высшего
государственный технический университет имени М.Т. Калашникова»
Факультет «Приборостроительный»
Лабораторная работа №5
Тема «Определение момента инерции тел
методом крутильных колебаний»
Выполнил:
Студент группы Б02-281-1
Перминов А.Е.
Проверил:
Наймушина С. И.
Ижевск 2013
Цель работы: определение момента инерции тела относительно оси проходящей через центр массы тела и проверка теоремы Штейнера.
Перечень приборов и принадлежностей:
1. трифилярный подвес
2. набор тел (2 цилиндра);
3. секундомер;
5. линейка.
Краткая теория:
Моментом инерции тела называется физическая величина J, характеризующая меру инертности тела при вращательном движении.
Момент инерции
тела не зависит от
Выполнение работы:
№ опыта |
Измеренные значения t (c) |
<t>-ti (c) |
(<t>-ti)2 (c) |
1 |
43.3 |
0.14 |
0.0196 |
2 |
43.4 |
0.04 |
0.0016 |
3 |
43.7 |
-0.26 |
0.0676 |
4 |
43.4 |
0.04 |
0.0016 |
5 |
43.4 |
0.04 |
0.0016 |
<t>=43.44c
; ∆tсл=2.8=0.19c
=(0.0196+0.0016+0.0676+0.
∆tпр= , где f цена деления секундомера. ∆tпр==0.093с
∆t=; ∆l==0.212 с
t=43.44 ± 0.21c.
Вычислить приборную погрешность с надежностью 95%:
∆lпр= , где f цена деления линейки. ∆lпр==0.00093м
Вычислить приборную погрешность с надежностью 95%:
∆Rпр= , где f цена деления линейки. ∆Rпр==0.00093м
m |
R, м |
r, м |
l, м |
<t>, c |
T |
J |
|
0.172±0.002 |
0,125 |
0,05 |
0,78 |
43.44 |
2.172
|
0,0016 |
0,0018 |
n = 20 колебаний.
; ; = 0.00029
2. Определение момента инерции
тела относительно оси,
№ опыта |
Измеренные значения t (c) |
<t>-ti (c) |
(<t>-ti)2 (c) |
1 |
35.2 |
0.02 |
0.0004 |
2 |
35.1 |
0.12 |
0.0144 |
3 |
35.3 |
-0.08 |
0.0064 |
4 |
35.4 |
-0.18 |
0.0324 |
5 |
35.1 |
0.12 |
0.0144 |
<t>=35.22c
; ∆tсл=2.8=0.16c
=(0.0004+0.0144+0.0064+0.
∆tпр= , где f цена деления секундомера. ∆tпр==0.093с
∆t=; ∆l==0.19 с
t=35.22 ± 0.19c.
Вычислить приборную погрешность с надежностью 95%:
∆lпр= , где f цена деления линейки. ∆lпр==0.00093м
Вычислить приборную погрешность с надежностью 95%:
∆mпр= , где f цена деления весов. ∆mпр==0.00093 кг
Вычислить приборную погрешность с надежностью 95%:
∆Rпр= , где f цена деления линейки. ∆Rпр==0.00093м
m1, кг |
m |
R, м |
rцил, м |
r, м |
l, м |
<t>, c |
T |
J1, |
J2,
| |
0.2 |
0.172±0.002 |
0,125 |
0.05 |
0,05 |
0,78 |
35.22 |
1.761
|
0,0023 |
0,0004 |
0.0007 |
n = 20 колебаний.
=0.0023±0.0004
; = 0.0004
= J – J ; = 0.0007±0.0000035
J = ; J = 0.00025±0.000005
3. Проверка теоремы Штейнера.
№ опыта |
Измеренные значения t (c) |
<t>-ti (c) |
(<t>-ti)2 (c) |
1 |
49.6 |
-0.08 |
0.0064 |
2 |
49.4 |
0.12 |
0.0144 |
3 |
49.4 |
0.12 |
0.0144 |
4 |
49.5 |
0.02 |
0.0004 |
5 |
49.7 |
-0.18 |
0.0324 |
<t>=49.52с
; ∆tсл=2.8=0.16c
=(0.0004+0.0144+0.0064+0.
∆tпр= , где f цена деления секундомера. ∆tпр==0.093с
∆t=; ∆l==0.19 с
t=49.52 ± 0.19c.
Вычислить приборную погрешность с надежностью 95%:
∆lпр= , где f цена деления линейки. ∆lпр==0.00093м
Вычислить приборную погрешность с надежностью 95%:
∆mпр= , где f цена деления весов. ∆mпр==0.00093 кг
Вычислить приборную погрешность с надежностью 95%:
∆Rпр= , где f цена деления линейки. ∆Rпр==0.00093м
m1, кг |
m |
R, м |
d, м |
r, м |
l, м |
<t>, c |
T |
J1, |
J2,
| |
0.2 |
0.172±0.002 |
0,125 |
0.1 |
0,05 |
0,78 |
49.52 |
2.476
|
0,0023 |
0,0004 |
0.0007 |
n = 20 колебаний.
= 0.007±0.001
; = 0.001
0.0027
=0.00225;
Вывод:
Вывод: в ходе выполнения данной лабораторной работы мы эксперементально определили моменты инерции твердых тел и проверили на практики теорему Штейнера.
Контрольные вопросы.
2). Определяют период колебаний нагруженной платформы.
3). По формуле вычисляют момент инерции нагруженной платформы, приняв за сумму масс тела платформы.
4). Находят момент инерции тела Jс = J-Jо; Jо – момент инерции ненагруженной платформы.
5). Результаты опыта заносят в таблицу
6). Измеренные значения моментов сравнивают с расчетным Jтеор рассчитанным, исходя из геометрии тела.
.
Информация о работе Определение момента инерции тел методом крутильных колебаний