Автор работы: Пользователь скрыл имя, 26 Октября 2009 в 18:22, Не определен
Общие сведения о неметаллических материалах
m — mo
W= ———— · 100%,
m0
где m — масса влажного образца при данной влажности в г; m0 — масса образца в абсолютно сухом состоянии в г (за m0 принимается масса образца, высушенного при 100 + 5°С).
Вода, содержащаяся
в древесине, бывает двух видов: свободная
(капиллярная) вода, заполняющая внутренние
пустоты, и связанная (гигроскопическая),
находящаяся в клеточных
Состояние древесины, при котором в ней имеется только связанная влага, называется точкой насыщения волокон. Для различных древесных пород максимальное количество связанной влаги колеблется от 23 до 30%. Свежесрубленной древесине соответствует влажность 50 — 100%; в древесине, пролежавшей долгое время на воздухе (воздушно-сухой), устанавливается влажность 10 — 20%, в комнатных условиях (комнатно-сухая древесина) — влажность 7 —10%, а для абсолютно сухой древесины влажность нулевая. Влажность, отвечающая условиям производственного помещения, носит название производственной влажности. За стандартную влажность древесины принята влажность 15%, которая представляет собой среднюю влажность воздушно-сухой древесины. Все свойства древесины для возможности сравнения устанавливаются при стандартной влажности 15%.' Производственная, влажность должна быть равна эксплуатационной или на 2% ниже (иначе древесина будет усыхать).
Изменение размеров
и формы древесины связано
с изменением ее влажности. Эти изменения
выражаются в усушке, разбухании и
короблении. При высыхании древесины
из нее вначале удаляется
Усушкой древесины называется уменьшение линейных размеров и объема древесины при высыхании (выражается в процентах). Усушка зависит от направления: так, наибольшая усушка происходит в тангентальном направлении, наименьшая — вдоль волокон.
Для определения усушки практически пользуются коэффициентом усушки К, который представляет собой среднюю усушку при изменении влажности на 1%, и определяется по формуле
Y
K= ——
W
Для различных пород полная усушка в радиальном направлении Ур = = 3-5%, в тангентальном Уг = 6 - 10%. Коэффициенты усушки в радиальном направлении Kр = 0,09 ~0,31%, в тангентальном Кт = 0,17 — 0,43%; коэффициент объемной усушки Ко = 0,32 - 0,7%. Усушка вдоль волокон составляет 0,1—0,35% и практически не учитывается.
Усушка представляет собой отрицательное явление, во-первых, потому, что ее необходимо учитывать при изготовлении деталей, и, во-вторых, она служит причиной появления в древесине внутренних напряжений, вызывающих трещины и коробления (рис.7).
Древесина разных пород имеет одинаковый химический состав, поэтому плотность вещества, образующего стенки клеток, принимается равной 1,54 г/см3. Для практических целей важно знать объемную массу у, которая зависит от влажности материала и коэффициента объемной усушки. Значение у15 древесины составляет 0,34-0,98 г/см3. Более легкими породами являются сосна, ель, пихта, липа, осина, ольха; очень тяжелыми -граб, груша, самшит. Чем больше объемная масса, тем плотнее древесина и тем лучше она сопротивляется нагрузкам.
Рис. 7. Виды коробления пиломатериалов:
1 — изменение
формы поперечного сечения
продольное коробление доски; 4 - коробление косослойной доски
Механические свойства древесины. Древесина анизотропна, и ее свойства зависят от влажности и других факторов. В связи с этим показатели механических свойств для возможности их сравнения и применения в расчете деревянных деталей на прочность относят к древесине, не имеющей пороков и при одинаковой влажности 15%.
Механические свойства наиболее распространенных пород древесины при W= 15% приведены в табл. 5.
Средние значения пределов прочности древесины вдоль волокон находятся в пределах: Ơс от 3,42 до 5,49 кгс/мм2; Ơв от 7,61 до 16,1 кгс/мм2 (в отдельных случаях до 27 кгс/мм2); Ơв — поперек волокон ниже в 6 — 30 раз, чем вдоль. Сопротивление сдвигу в плоскости волокон, (скалывание) невелико и составляет 1/6-1/8 Ơс (продольное направление), Ơизг в 1,5-2 раза
Таблица 5
Основные физико-механические свойства наиболее распространенных пород древесины(при -влажности 15%)
Порода | Предел прочности, кгс/мм2 | ||||||||||||
Объемная масса | при сжатии
вдоль волокон |
При растяжении вдоль волокон | при
статическом изгибе |
при скалывании
вдоль волокон |
Удельная работа
при ударном
Изгибе кгс/см2 |
Твердость, кгс/мм2 | Модуль упругости вдоль волокон, 103, кгс/мм- | ||||||
Радиальная | Тан
ген таль ная |
торцовая | при сжатии | при растяжении | при изгибе | ||||||||
ра-ди-аль-ная | Тангена льная | ||||||||||||
Лиственница | 0,68 | 5,4 | 12,2 | 9.84 | 0,94 | 0,82 | 0.27 | 2,80 | 2,78 | 4,03 | 1.40 | 1,45 | 1,47 |
Сосна | 0.51 | 4,1 | 10,0 | 7,58 | 0,69 | 0,67 | 0,20 | 2,17 | 2 23 | 2,62 | 1,17 | 1,17 | 1,22 |
Ель | 0,46 | 3.9 | 10.6 | 7,17 | 0,6 | 0,62 | 0,20 | 1,73 | 1,68 | 2,41 | 1,42 | 1,43 | 1,06 |
Кедр сибирский | 0.44 | 3,6 | 8.20 | 6,48 | 0,6 | 0,64 | 0,14 | — | — | 2,03 | — | — | - |
Пихта | 0.39 | 3,4 | 7,61 | 6,07 | 0,5 | 0,57 | 0.14 | 1,67 | 1,64 | 2,48 | 1,25 | 1,25 | 1,01 |
Лиственные | |||||||||||||
Граб | 0,81 | 5,3 | 13.4 | 12,1 | 1,41 | 1.77 | 0,48 | 7.01 | 7.17 | 8,25~ | _ | _ | _ |
Дуб | 0,76 | 5,1 | - | 8,91 | 1.10 | 1,25 | 0,46. | 5.36 | 5.68 | 6,53 | 1,40 | 1,40 | 1.51 |
Клен | 0,70 | 5,2 | _ | 10,5 | 1.13 | 1.29 | 0.37 | 5,06 | 5.37 | 6,90 | — | — | — |
Ясень | 0,69 | 4,9 | 13.9 | 10,8 | 1,2 | 1.22 | 0.43 | 5,34 | 6.09 | 7,32 | 1,50 | 1,40 | 1.28 |
Бук | 0,68 | 4,7 | 11,7 | 9.53 | 1,06 | 1,32 | 0,39 | 3,94 | 4,03 | 5,56 | — | — | — |
Береза | 0,64 | 4,6 | 16,1 | 9,67 | 0..8 | 1,02 | 0,45 | 3,36 | 3,00 | 4,23 | 1,58 | 1,81 | 1.51 |
Липа | 0,50 | 3,9 | 11.5 | 7,75 | 0,7 | 0.74 | 0,28 | 1,56 | 1.63 | 2 34 | _ | — | — |
Осипа | 0.50 | 3,7 | 12.0 | 6,86 | 0.5 | 0,78 | 0.41 | 1,75 | 1,83 | 2,41 | 1,26 | 1,54 | 1,10 |
больше, чем ас. Модули упругости при растяжении и сжатии примерно равны, в продольном направлении их значение в 10 — 30 раз больше, чем в поперечном. Вдоль волокон £ = = (1,17 ~ 1,58) 103 кгс/мм2.
При ударных нагрузках сопротивление ударному изгибу вязких пород (ясеня, дуба) в 1,5 — 3 раза выше, чем хрупких хвойных пород (сосны, ели,
пихты). Прочность древесины зависит от скорости нагружения: чем медленнее прикладывается нагрузка, тем меньше величина предела прочности. Со временем сопротивление древесины постепенно уменьшается и достигает некоторого предела долговременного сопротивления, при котором деревянная деталь может работать неопределенно долгое время (рис. 234). Для всех видов напряженного состояния древесины величина длительного сопротивления принимается равной 2/3 предела прочности.
При вибрационных нагрузках необходимо учитывать усталость (или выносливость) древесины. Предел выносливости сте всегда меньше статического предела прочности аст. Отношение ств/стСт при изгибе составляет для разных пород 0,24 — 0,38:
Защита древесины
от увлажнения, загнивания и воспламенения.
В условиях эксплуатации или хранения
древесины на открытом воздухе ее
влажность может значительно
увеличиваться и вызывать загнивание
деревянных элементов. Для борьбы с
этим недостатком применяют
Антисептики представляют собой водные растворы минеральных солей (фтористого натрия, хлористого цинка, медного купороса и др.) и спиртовые растворы оксидифенила и ртутноорганических соединений. Антисептирование производят путем промазки, опрыскивания, пропитки под давлением.
Древесина; легко воспламеняется от огня (точка воспламенения 330-470°С). Для повышения ее огнестойкости (хотя сделать древесину совсем несгораемой нельзя) применяют ряд способов. Первый и наиболее эффективный способ защиты — пропитка химическими веществами — антипиренами, второй - окраска огнезащитными красками. В качестве антипиренов используют аммониевые соли и соли фосфорной кислоты или борной кислоты. Огнезащитные краски должны быть негорючими и нетеплопроводными. К ним относятся силикатные краски на основе жидкого стекла и перхлорвиниловые лакокрасочные покрытия.
Материалы из натуральной древесины применяют в виде пиломатериалов и заготовок. В зависимости от размеров поперечного сечения различают брусья, ширина и толщина которых свыше 100 мм; бруски шириной не более двойной толщины; доски при ширине более двойной толщины (тонкие узкие доски называются планками).
Пиломатериалы хвойных пород применяют более широко, поскольку они обладают высокой прочностью, меньше подвержены загниванию, особенно сосна; из лиственных пород дуб и ясень хорошо поддаются гнутью; бук и береза служат их заменителями. Хвойные и твердые лиственные породы применяют для силовых нагруженных деталей. Мягкие породы (липа) являются несиловыми материалами. Хвойные пиломатериалы используют в судостроении, в автотранспорте (детали грузовых автомобилей), в конструкциях грузовых железнодорожных вагонов, сельскохозяйственных машин и т. д. Заготовки из древесины используются для тех же целей и моделей.
Шпон — широкая ровная стружка древесины, получаемая путем лущения или строгания. Толщина листов шпона от 0,55 до 1,5 мм. Шпон является полуфабрикатом для изготовления фанеры, древесных слоистых пластиков и выклейки гнутых деталей. Шпон с красивой текстурой (дуб, бук и др.) используется в качестве облицовочного материала для изделий из древесины.
Фанера — листовой материал, получаемый путем склейки слоев шпона. Толщина фанеры от 1 до 12 мм, более толстые материалы называют плитами. В зависимости от склеивающего шпон клея и степени водостойкости фанера выпускается следующих марок: ФСФ на фенолоформальдегидном клее с повышенной водостойкостью, ФК — на карбамидном и ФБА на альбуминоказеиновом клеях со средней водостойкостью и ФБ на белковых клеях ограниченной водостойкости. Березовая фанера имеет вдоль волокон рубашек Ơв = 6,5 -г 8 кгс/мм2.
Прессованная древесина получается при горячем прессовании брусков, досок, заготовок, при этом она подвергается специальной термообработке в уплотненном состоянии.
Прессованная древесина имеет следующие свойства: объемную массу 1,1-1,42 г/см3, предел прочности вдоль волокон при растяжении 14-23 кгс/мм2, при сжатии 9-13 кгс/мм2, при изгибе 15-20 кгс/мм2, ударную вязкость 60-80 кгс-см/см2.
Прессованная древесина является заменителем черных и цветных металлов и пластмасс. Она широко применяется для изготовления деталей машин, работающих при ударных нагрузках (кулачки, сегменты зубчатых передач, подшипники, втулки и т. д.). Вкладыши из древесины по сравнению с бронзовыми имеют вдвое меньший износ, снижается расход смазочного масла.
Древесностружечные
плиты изготовляют горячим
. Древесностружечные плиты легкие, имеют объемную массу 0,35-0,45 г/см3, Ơи = 0,5 кгс/мм2, обладают теплоизоляционными свойствами [λ = = 0,045 ккал/(м · ч°С)]. Для тяжелых и сверхтяжелых плит объемная масса достигает 0,75—1,1 г/см3 и Ơ„ = 2,1 - 5,3 кгс/мм2. Древесностружечные плиты применяют для пола и бортов грузовых машин и прицепов, в вагоностроении, в строительстве, для производства мебели и т. д.
Древесноволокнистые
плиты изготовляют из древесных
волокон (размельченной древесины),
иногда с добавками связующих
составов. Под действием высокой
температуры и большого давления
древесные волокна
Неорганическим материалам присущи негорючесть, высокая стойкость к нагреву, химическая стойкость, неподверженность старению, большая твердость, хорошая сопротивляемость сжимающим нагрузкам. Однако они обладают повышенной хрупкостью, плохо переносят резкую смену температур, слабо сопротивляются растягивающим и изгибающим усилиям и имеют большую плотность По сравнению с органическими полимерными материалами.
Основой неорганических материалов являются главным образом окислы и бескислородные соединения металлов. Поскольку большинство неорганических материалов -содержит различные соединения кремния с другими элементами, эти материалы объединяют общим названием силикатные. В настоящее время применяют не только соединения кремния, но и чистые окислы алюминия, магния, циркония и др., обладающие более ценными техническими свойствами, чем обычные силикатные материалы.
Неорганические
материалы подразделяют на неорганическое
стекло, стеклокристаллические
Неорганическое стекло следует рассматривать как особого вида затвердевший раствор — сложный расплав высокой вязкости кислотных и основных окислов.
Стеклообразное состояние является разновидностью аморфного состояния вещества. При переходе стекла из расплавленного жидкого состояния в твердое аморфное в процессе быстрого охлаждения и нарастания вязкости беспорядочная структура, свойственная жидкому состоянию, как бы «замораживается;). В связи с этим неорганические стекла характеризуются неупорядоченностью и неоднородностью внутреннего строения.
Стеклообразующий каркас стекла представляет собой неправильную пространственную сетку, образованную кремнекислородными тетраэдрами [SiO4]4-. На рис. 8 (а) показана такая сетка кварцевого стекла. При частичном изоморфном замещении кремния в тетраэдрах, например, на алюминий или бор, образуется структурная сетка алюмосиликатного [SixAlO4]z- ~ или боросиликатного [SixBO4]z- стекол. Ионы щелочных (Na, К) и щелочноземельных (Са, Mg, Ва) металлов называются модификаторами; в структурной сетке стекла они располагаются в промежутках тетраэдрических группировок (рис. 8(б)). Введение Na2O или других модификаторов разрывает прочные связи Si — О — Si и снижает прочность, термо- и химическую стойкость стекла, одновременно облегчая технологию его производства. Большинство стекол имеет рыхлую структуру с внутренней неоднородностью и поверхностными дефектами.