Автор работы: Пользователь скрыл имя, 18 Апреля 2010 в 18:28, Не определен
Введение...................................................................................3
1. Общие сведения
1.1 Цель и постановка задачи.............................................4
1.2 Основные понятия
1.2.1. Холодильный агент…… ……………………..9
1.2.2. Наночастицы…………… …………………… 18
1.3 Краткие сведения о кипении хладагентов .................20
1.4 Концептуальная модель системы................................23
2 Среда разработки “ANSYS Multiphisics”
2.1 Программные модули ANSYS.……….........................25
2.2Вычислительная гидродинамика.
Программный комплекс ANSYS CFX®……….……….30
3.Список использованной литературы...................................37
Различают естественные и искусственные холодильные агенты. К естественным хладагентам относятся: аммиак (R717), воздух (R729), вода (R718), углекислота (R744) и др., к искусственным — хладоны (смеси различных фреонов).
Фреоны — углеводороды (СН4, С2Н6, С3Н8 и С4Н10), в которых водород полностью или частично заменен фтором и хлором (в отдельных случаях бромом). Международным стандартом принято краткое обозначение всех холодильных агентов, состоящее из символа R (Refrigerant — хладагент) и определяющей цифры. Например, фреон-12 имеет обозначение R12. Поэтому на сегодня все фреоны принято обозначать в международной символике, отсюда и их название — хладоны.
По термодинамическим свойствам наилучшим природным холодильным агентом считается аммиак. Поэтому в настоящее время на крупных холодильных установках с умеренно низкими температурами (-15…-25°С) наиболее распространен аммиак. В малых и средних холодильных машинах и установках используют хладон-12 и хладон-22. Ограниченное применение находят такие хладагенты, как хладон-13, хладон-500, хладон-502.
Аммиак (NH3) — бесцветный газ, с резким удушливым запахом, в небольших концентрациях вреден для человека. Температура кипения аммиака при атмосферном давлении — -33,4°С, температура замерзания — -77,7°С, предельно допустимая концентрация аммиака в воздухе — 0,02 мг/л. При больших концентрациях он вызывает сильные раздражения слизистой оболочки глаз и дыхательных путей. Сильное отравление вызывает головокружение, ослабление пульса, отек легких, судороги, потерю сознания, а пребывание человека в течение более 30 мин в помещении с концентрацией аммиака 0,5 — 1% может привести к смертельному исходу. При отравлении аммиаком активизируется туберкулез, возможны параличи и глухота. Жидкий аммиак вызывает тяжелые ожоги. Особенно опасно попадание в глаза даже одной капли аммиака. Помимо возможного прободения роговицы, хрусталика и стекловидного тела ожог глаз аммиаком зачастую приводит к полной слепоте.
Аммиак горит при содержании в воздухе около 11 — 14%, а при конденсации 16—28% смесь аммиака с воздухом становится взрывоопасной. В присутствии влаги аммиак разрушает медь, цинк, бронзу и другие сплавы меди, за исключением фосфористой бронзы. На черные металлы и алюминий он не действует. В воде аммиак хорошо растворяется, в масле — плохо.
Аммиак
не оказывает отрицательного действия
на пищевые продукты при кратковременном
воздействии: они очень быстро абсорбируют
его из воздуха, но в последующем
при попадании продуктов в
атмосферу чистого воздуха
Сильный
запах аммиака позволяет
Хладон-12 (R12) в нормальных условиях представляет собой бесцветный газ со слабым запахом, который ощущается при концентрации в воздухе более 20%. Температура кипения при атмосферном давлении — -29,8°С, температура замерзания — -155°С. При концентрациях в воздухе этого хладагента более 30% наступает удушье из-за высокой плотности, которая препятствует поступлению свежего воздуха. Хладон-12 при соприкосновении с нагретыми поверхностями или при воздействии открытого пламени при температуре выше 330°С разлагается, образуя ядовитые вещества: фтористый и хлористый водород, оксид углерода и фосген. Продукты разложения не имеют запаха и цвета, что увеличивает опасность отравления.
С точки
зрения надежности хладон-12 является идеальным
холодильным агентом для
Хладон-12 хорошо растворяется в масле; в воде он не растворяется. Утечки R12 обнаруживают с помощью галоидной лампы, обмыливанием и электронным течеискателем.
Хладон-22 (R22) в нормальных условиях представляет собой бесцветный газ со слабым запахом хлороформа, температура кипения — -40,8°С, температура конденсации — не выше 50°С. R22 не горит, не взрывоопасен, но более вреден для человека, чем R12. Применяется для более низких температур кипения по сравнению с R12. R22 хорошо растворяет масло.
Хладон-22
имеет более высокие значения
коэффициентов теплоотдачи при
кипении и конденсации, чем хладон-12,
что позволяет
Хладон- 13(R13) используют в сверхнизкотемпературных системах, как правило, в нижней ветви каскадных машин, не горюч, не взрывоопасен, практически безвреден для человека. Температура кипения при атмосферном давлении — -81,5°С, температура конденсации — не выше -10°С. Имеет ограниченную растворимость в масле. Хладон-13 используют для получения температуры кипения -70…-10 °С.
Наряду с чистыми фреонами широко применяют и их смеси: азеотропные и неазеотропные.
Азеотропными называются смеси, состоящие из двух и более компонентов (хладонов), которые кипят и конденсируются при постоянной температуре как однородные вещества.
Неазеотропные смеси характеризуются разделением равновесных концентраций компонентов в жидкой и газовой фазах. Кипение и конденсация неазеотропных смесей происходит при переменных температурах. Неазеотропные смеси применяют для увеличения холодопроизводительности, снижения температур конца сжатия, расширения диапазона применения по температурам кипения и конденсации.
Хладон-500 (R500). Хладон является смесью R152 (26,2%) и R12 (73,8%). Для компрессора с одним рабочим объемом цилиндров данная смесь обеспечивает на 20% больше холодопроизводительности, чем R12. Давление кипения хладо-на-500 — 0,137 Мпа при -15°С; давление конденсации — 0,779 Мпа при 30°С. Температура кипения при атмосферном давлении равна -33°С, а скрытая теплота парообразования — 189,87 кДж/кг при -15°С.
R500 используют в торговом и промышленном холодильном оборудовании и только в машинах с поршневыми компрессорами.
R500 довольно хорошо растворяется в масле и плохо — в воде. В связи с этим из этого агента рекомендуется удалять влагу с помощью осушителей.
Хладон-502 (R502) — азеотропная смесь хладона-22 (48,8%) и хладона-115 (51,2%). Температура кипения при атмосферном давлении -45,6°С. По объемной холодопроизводительности и другим свойствам он близок к хладону-33. Его можно применять до температуры конденсации 60°С. Используется в средне- и низкотемпературных машинах, бытовых холодильниках, регенеративных циклах холодильных установок. Хладон-502 имеет следующие преимущества по сравнению с хладоном-22: более стабилен и менее токсичен; увеличивает холодопроизводительность в низкотемпературном герметичном компрессоре на 10—30%.
Неазеотропные смеси широко применяются в герметичных компрессорах, их использование позволяет повысить надежность работы холодильного агрегата и снизить энергопотребление. Примером неазеотропной смеси может служить смесь хладагентов R502 и R113 в соотношении соответственно 85 и 15%.
Особенностью
хладонов является их малая токсичность,
негорючесть, взрывобезопасность, достаточно
высокая термостойкость и химическая
нейтральность. Однако следует помнить,
что в присутствии открытого
пламени хладоны разлагаются
с образованием ядовитых веществ. Поэтому
курить и пользоваться открытым пламенем
в холодильных камерах
Озонобезопасные хладагенты. Защита окружающей среды от вредного воздействия различных машин и оборудования, в том числе и от работы холодильного оборудования, является весьма актуальной проблемой для всего человечества. Производимые в любой стране домашние холодильники неизбежно когда-то выходят из строя и это ведет к их разгерметизации и попаданию хладагента в окружающую среду. Как было установлено учеными, хладоны, попадая в окружающий воздух, вступают в химическую реакцию с озоновым слоем атмосферы и вызывают его разрушение. Это чревато для людей и всего живого на планете самыми серьезными последствиями. Поэтому в 1987 г. В Монреале представителями многих стран были приняты меры по ограничению производства веществ, разрушающих озоновый слой. Озоноразрушающая способность хладонов определяется наличием атомов хлора в молекуле и оценивается потенциалом разрушения озона ODP (Ozon Depletion Potential) и потенциалом «парникового эффекта» GWP (Global Warming Potential) относительно СО2. В своих исследованиях американские ученые показали механизм разрушения озонового слоя. Так как хладагенты значительно тяжелее воздуха, то, казалось бы, они не должны попадать в стратосферу. Однако хладон, попадая в атмосферу, взаимодействует с влагой и подвергается воздействию искровых разрядов (молний). Это приводит к гидролизу и пиролизу хладона с отщеплением атомов хлора. Атом хлора активно включается в процесс разрушения озона. Одна молекула хлора способна разрушить до ста тысяч молекул озона.
По степени озоноразрушающей активности хладагенты делят на две группы:
К первой группе относятся хладоны R11, R12, R13, R113, R114, R115, R500, R501 и др. Молекулярная формула каждого из хладонов не содержит атомов водорода (за исключением азеотропных смесей), поэтому их гидролиз и высокотемпературный пиролиз протекают с образованием свободных атомов хлора.
Ко второй
группе относятся менее
Хладоны, не содержащие атомов хлора, являются полностью озонобезопасными. К ним относятся R116, R125, R143, R113а, R152a, R290, R600 и др.
В Украине
к 2020 г. Все холодильное оборудование должно
работать на озонобезопасных хладонах.
В этих целях должны быть разработаны
новые холодильные машины, налажена новая
технология выпуска как самих хладонов,
так и холодильных масел, адсорбентов,
новых материалов, приборов автоматики
и контроля.
1.2.2 Наночастицы
Прежде чем рассматривать понятие наночастицы, рассмотрим основные понятия предшествующие ему.
Нано-объект – это физический объект исследований (и разработок), размеры которого принято измерять в нанометрах.
Нанотехнология имеет дело как с отдельными нано-объектами, так и с материалами на их основе, а также процессами на нано-уровне. К наноматериалам относятся такие материалы, основные физические характеристики которых определяются содержащимися в них нанообъектами.
Наноматериалы делятся на компактные материалы и нанодисперсии; к первым относятся так называемые «наноструктурированные» материалы [2], т.е. изотропные по макросоставу материалы, повторяющимися элементами, структуры которых являются группировки (области), имеющие размеры нескольких нанометров, иногда десятки нанометров и более [3]; иными словами, наноструктурированные материалы состоят из непосредственно контактирующих между собой нанообъектов. В отличие от этого, нанодисперсии состоят из среды диспергирования (вакуум, газ, жидкость или твёрдое тело), в которой распределены изолированные друг от друга нано-объекты. Расстояние между нано-объектами в нанодисперсиях может меняться в достаточно широких пределах от десятков нанометров до долей нанометра; в последнем случае мы имеем дело с нанопорошками, где нано-объекты разделены тонкими (часто – моноатомными) слоями из лёгких атомов, препятствущих их агломерации.
Наночастица – это квази-нульмерный (0D) нанообъект, у которого все характерные линейные размеры имеют один порядок величины; как правило, наночастицы имеют сфероидальную форму; если в наночастице наблюдается ярко выраженное упорядоченное расположение атомов (или ионов), то такие наночастицы называют нанокристаллитами. Наночастицы с выраженной дискретностью системы уровней энергии часто называют «квантовыми точками» или «искусственными атомами»; чаще всего они имеют состав типичных полупроводниковых материалов [4, 5].
Квази-одномерные
нанообъекты (1D)–это наностержни, нанопроволоки
(nanorods, nanowires); здесь один характерный размер
объекта, по крайней мере, на порядок превышает
два другие; физики их называют «квантовые
провода» .
Информация о работе Моделирование процесса кипения нанофлюидов