Механическая картина мира

Автор работы: Пользователь скрыл имя, 21 Декабря 2010 в 16:21, реферат

Описание работы

Новая наука, и в частности физика, начинается с Галилея и Ньютона. Но она, как и новая культура, не явилась непосредственным продолжением науки и культуры средних веков. На рубеже 15 в. старую, средневековую культуру стран Западной и Центральной Европы сменила новую культуру, характерными чертами которой были гуманизм, восстановление интереса к античности, возрождение античных ценностей, отрицание схоластики, вера в возможности человека и его разума.

Содержание работы

Естественнонаучные взгляды Леонардо да Винчи 2
Гелиоцентрическая система Мира Николая Коперника 4
Научные взгляды и труды Галилео Галилея 5
Открытие законов небесной механики И. Кеплером 8
Механика Исаака Ньютона 10
Успехи и трудности МКМ 13
Список литературы 18

Файлы: 1 файл

Механическая картина мира.doc

— 115.50 Кб (Скачать файл)

     Пространство. Аристотель отрицал существование пустого пространства, связывая пространство, время и движение. Атомисты же признавали атомы и пустое пространство, в котором атомы движутся. Ньютон рассматривает два вила пространства: относительное, с которым люди знакомятся путем измерения пространственных отношений между телами, и абсолютное – это пустое вместилище тел, оно не связано с временем и его свойства не зависят от наличия или отсутствия в нем материальных объектов. Оно является трехмерным, непрерывным, бесконечным, однородным, изотропным. Пространственные отношения описываются в МКМ геометрией Евклида.

     Время. Ньютон рассматривает два вида времени: относительное и абсолютное. Относительное время познают в процессе измерений. «Абсолютное, истинное, математическое время само по себе и по самой своей сущности, без всякого отношения к чему – либо внешнему, протекает равномерно и иначе называется длительностно». Таким образом, время – пустое вместилище событий, не зависящее ни от чего, оно течет в одном направлении (от прошлого к будущему), оно непрерывно, бесконечно и везде одинаково (однородно).

     Движение. В МКМ признавалось только механическое движение, т.е. изменение положения тела в пространстве с тече6нием времени. Считалось, что любое сложное движение можно представить как сумму пространственных перемещений (принцип суперпозиции). Движение любого тела объяснялось на основе трех законов Ньютона.

     Следует заметить, что в механики вопрос о природе сил не имел принципиального значения. Для ее законов и методологии было достаточно, что сила – это количественная характеристика механического взаимодействия тел. Просто она стремилась свести все явления природы к действию сил притяжения и отталкивания, встретив на этом пути непреодолимые трудности.

     Важнейшими  принципами МКМ являются принцип  относительности Галилея, принцип дальнодействия и принцип причинности. Принцип относительности Галилея утверждает, что все инерциальные системы отсчета (ИСО) с точки зрения механики совершенно равноправны (эквивалентны). Переход от одной инерциальной системы к другой осуществляется на основе преобразований Галилея.

         В МКМ было принято, что взаимодействие  передается мгновенно и промежуточная среда в передаче взаимодействия участия  не принимает. Это положение и носит принцип дальнодействия.

     Как известно, беспричинных явлений нет, всегда можно выделить причину и следствие, причина и следствие взаимосвязаны, и влияют друг на друга. Следствие может быть причиной другого явления. «Всякое имеющее место явление связано с предшествующим на основании  того очевидного принципа, что оно не может возникнуть без производящей причины». В природе могут быть и более сложные связи:

     1. У одного  и того же следствия  могут быть разные причины,  например, превращение насыщенного пара в жидкость за счет повышения давления или за счет понижения температуры.

     2. В тепловом движении, например, скорость, кинетическая энергия, импульс  отдельной частицы изменяются  без изменения макропараметров  (температуры, давления, объема), характеризующих  систему в целом. В результате  развития термодинамики и статистической физики был открыт ряд важных законов, в том числе сохранения и превращения энергии для тепловых процессов (первое начало термодинамики) и закон возрастания энтропии в изолированных системах (второе начало термодинамики).

     Термодинамика – это раздел физики, который изучает закономерности перехода энергии из одного вида в другой. Первый закон термодинамики гласит: «Тепло, сообщенной системе, расходуется на изменение ее внутренней энергии и на совершение системой работы против внешних сил». С точки зрения первого начала термодинамики в системе могут протекать любые процессы, лишь бы не нарушался закон сохранения  и превращения энергии.

     Все реальные процессы являются необратимыми, поскольку наличие сил трения обязательно приводит к переходу упорядоченного движения в неупорядоченное. Для характеристики состояния системы и направленности протекания процессов и была введена в физике особая функция состояния – энтропия. Оказалось, что энтропия замкнутой системы не может убывать. Замкнутость системы означает, что в ней процессы протекают самопроизвольно, без внешнего влияния. В случае обратимых процессов (а их в реальности нет)  энтропия замкнутой системы остается неизменной, в случае необратимых процессов – она возрастает. Таким образом, реально энтропия замкнутой системы может только возрастать, это и есть закон возрастания энтропии (одна из формулировок второго начала термодинамики). Этот закон имеет большое значение для анализа процессов в замкнутых макроскопических системах. Статистический характер этого закона означает его большую фундаментальность по сравнению с динамическими законами.

     В современной физике вероятностно-статистические идеи получили широчайшее распространение (статистическая физика, квантовая механика, теория эволюции, генетика, теория информации, теория планирования и т.д.). Несомненно,  и их практическая ценность: контроль качества продукции, проверка работы того или иного объекта, оценка надежности агрегата, организация массового обслуживания. Но ни термодинамика, ни статистическая физика не сумели коренным образом изменить представления МКМ, разрушить ее: МКМ видоизменилась и расширила свои границы. Развитие физики до середины XIX в. шло в основном в рамках ньютоновских воззрений, но все больше новых открытий, особенно в области электрических и магнитных явлений, не вписывались в рамки механических представлений, т.е. МКМ становилась тормозом для новых теорий, и назревала необходимость перехода к новым воззрениям на материю и движение. Несостоятельной оказалась не сама МКМ, а ее исходная философская идея – механицизм. В недрах МКМ стали складываться элементы новой – электромагнитной – картины Мира.

     Все сказанное о механической картине  Мира можно подытожить следующими выводами:

     1. Впечатляющие успехи механики  привели к механицизму и представление о механической сущности Мира стало основой мировоззрения. Неделимые атомы составляли основу Природы. Живые существа – это «божественные машины», действующие по законам механики. Бог создал Мир и привел его в движение.

     2. В рамках МКМ развивалась молекулярная физика. Представление о теплоте формировалось в двух направлениях: как механическое движение частиц и как движение невесомых, неощутимых «флюидов» (теплород, флогистон).

     На  основе электрических магнитных  «жидкостей» механика стремилась объяснить электрические и магнитные явления, на основе флюида «жизненная сила» пыталась понять работу живых организмов.

     3.Анализ  работы тепловых машин привел  к возникновению термодинамики, важнейшим достижением которой явилось открытие закона сохранения и превращения энергии. Но в МКМ все виды энергии сводились к энергии механического движения. Макромир и микромир подчинялись одним и тем же механическим законам. Признавались только количественные изменения. Это означало отсутствие развития, т. е. Мир считался метафизическим.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Список  литературы

  1. Брызгалина  Е. В. Учебное пособие «Концепции современного естествознания». – М.: «Юридический колледж МГУ», 1997. – 161 с.
  2. Рузавин Г. И. Концепции современного естествознания. – М.: Культура и спорт, ЮНИТИ, 1997. -287 с.
  3. Карпенков С.Х., Кони С.Е. Концепции современного естествознания. – М.: Культура и спорт, ЮНИТИ, 1997. - 520 с.
  4. Ефименко В.Ф. Физическая картина мира и мировоззрения. Владивосток: Изд. – ДВГУ 1997. – 160 с.
  5. Концепции современного естествознания. Учебник для вузов/ под ред. проф. В.Н. Лавриненко, В.П. Ратникова. – 2-е изд., перераб. и доп. – М.: ЮНИТИ-ДАНА, 2002. – 303 с.
  6. Найдыш В.М. Концепции современного естествознания: Учеб. пособие. – М.: Гардарики, 2002. – 476 с. 

Информация о работе Механическая картина мира