Автор работы: Пользователь скрыл имя, 01 Февраля 2011 в 19:01, реферат
Магнетизм – это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Некоторыми хорошо известными материалами, демонстрирующими магнитные свойства, являются железо, некоторые виды стали и природный минерал магнетит (магнитный железняк). В действительности, все материалы в большей или меньшей степени подвержены воздействию магнитного поля, хотя в большинстве случаев это воздействие слишком мало, чтобы быть обнаружено без специального оборудования
Магнетизм. Первое упоминание о явлении магнетизма.
Магнитное поле: графическое изображение, основные характеристики магнитного поля.
Ферромагнетизм, диамагнетизм, парамагнетизм.
Магниты: основные характеристики магнитов, виды магнитов.
Современные магнитные материалы и их свойства, защитные покрытия магнитов.
Способы намагничивания магнитов.
Применение магнитов. Эффект Холла, датчик Холла. Геркон
Содержание:
Магнетизм.
Магнетизм – это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Некоторыми хорошо известными материалами, демонстрирующими магнитные свойства, являются железо, некоторые виды стали и природный минерал магнетит (магнитный железняк). В действительности, все материалы в большей или меньшей степени подвержены воздействию магнитного поля, хотя в большинстве случаев это воздействие слишком мало, чтобы быть обнаружено без специального оборудования
Это явление известно людям очень давно. Свое название оно получило от города Магнетии в Малой Азии, где были обнаружены залежи магнитного железняка – «камня, притягивающего железо».
Первым письменным свидетельствам знакомства человека с магнитными свойствами некоторых материалов более двух тысяч лет. В одном из таких источников – замечательной поэме «О природе вещей», написанной Титом Лукрецием Каром в I веке до нашей эры, читаем:
«Также бывает, что попеременно порода железа
Может от камня отскакивать или к нему привлекаться.
Также и то наблюдал я, как прыгают в медном сосуде
Самофракийские кольца железные или опилки
В случае, если под этим сосудом есть камень магнитный».
Лукреций объяснял магнетизм «магнитными токами», истекающими из «камня-магнита», а силу притяжения образно рисовал так:
«Связь такова здесь, как будто крючки, зацепившись за петли.
Держатся между собой в сочетанье известном, какое
Можем увидеть мы между железом и камнем магнитным».
Одно из первых практических использований магнетизма – компас. Наши предки заметили: продолговатый кусочек магнитного железа, подвешенный на нитке или прикрепленный к пробке, плавающей в воде, всегда располагается так, что один его конец показывает на север, а другой – на юг. Компас был изобретен в Китае примерно за тысячу лет до нового летосчисления; в Европе он известен с XII века. Без этого простейшего навигационного прибора были бы невозможны Великие географические открытия XV...XVII веков.
Магнитное поле и его графическое изображение.
Основные свойства магнитного поля:
1. магнитное поле порождается электрическим током (движущимися зарядами).
2. магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
Согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи. В магнитах эти элементарные кольцевые токи ориентированы одинаково. Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.
Для наглядного представления магнитного поля пользуются магнитными линиями (их называют также линиями магнитного поля). Напомним, что магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле. Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле. Магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещенной в эту точку.
Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику.
За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку.
В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее. Таким образом, по картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких – с меньшей).
Основные
характеристики магнитного
поля.
Магнитная индукция - интенсивность магнитного поля, т. е.способность его производить работу. Чем сильнее магнитное поле, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м2.
Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность. Следовательно, в однородном магнитном поле:
Ф = BS
где S — площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна:
B = Ф/S .
Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость μа (1 Гн/м = 1 Ом*с/м). Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов, имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, μо= 4π * 10-7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ.
Относительная магнитная проницаемость:
μr = μa/ μо .
Напряженность магнитного поля H (э) не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением:
Н = В/μо μr
Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Ферромагнетизм. Когда ферромагнитный материал помещается около магнита, он начинает притягиваться по направлению к области с наибольшим магнитным полем. Это то, с чем мы хорошо знакомы, наблюдая, как магнит собирает кнопки или скрепки. Железо, кобальт, никель, взвеси и сплавы из этих элементов представляют явление ферромагнетизма вследствие взаимодействия электронов с соседними электронами. Электроны выстраиваются, создавая магнитные домены, формирующие постоянный магнит. Если кусок железа поместить внутри сильного магнитного поля, магнитные домены вытянутся в направлении силовых линий поля и сожмутся в направлении, перпендикулярном магнитному полю.
Диамагнетизм. Когда диамагнитный материал помещается около магнита, он отталкивается от области наибольшего магнитного поля, в отличие от ферромагнитного материала. Так проявляют себя большинство материалов, но это сложно заметить. Люди и лягушки диамагнитны. Известен интересный эксперимент, в котором лягушка левитирует на конце очень сильного электромагнита. Некоторые металлы, например, висмут, медь, золото, серебро, свинец, также как неметаллы, например, графит, вода и большинство органических соединений, являются диамагнетиками.
Парамагнетизм. Когда парамагнитный
материал помещается около магнита, он
начинает притягиваться по направлению
к области с наибольшим магнитным полем,
подобно ферромагнитному материалу. Отличие
только в том, что притяжение это слабое.
Парамагнетизм представлен материалами,
содержащими переходные элементы, редкоземельные
или актинидные элементы. Жидкий кислород
и алюминий являются примерами парамагнитных
материалов.
Основные характеристики магнитов.
B(Тл) - магнитная индукция. Это результат измерения (в Гауссах или Тесла), который Вы получаете, когда используете гауссметр для измерений на поверхности магнита. Получаемый результат полностью зависит от расстояния от поверхности магнита, от формы магнита, точки измерения, толщины пробника (датчика) и магнитного покрытия. Сталь за магнитом значительно увеличивает величину B. Использование величины измеренной магнитной индукции – не самый хороший способ сравнивать силу различных магнитов, т. к. B сильно зависит от техники измерений, хотя для однотипных магнитов этот способ достаточно точен.
Br(Тл) - остаточная магнитная индукция. Определяет, насколько сильное магнитное поле (плотность потока) может производить магнит. Максимальный магнитный поток, который может создать магнит, измеряемый только в замкнутой магнитной системе. Именно та величина, которую рекламируют производители магнитного порошка и магнитов. Хороший способ сравнивать силу магнитов…, но имейте в виду, что магниты в замкнутой магнитной системе практически никогда не используются в промышленности, исключая случай тестовых измерений.
Hc
(А/м) - коэрцитивная
магнитная сила, коэрцитивное
магнитное поле. Определяет величину
внешнего магнитного поля, при котором
магнит, первоначально намагниченный
до состояния насыщения, становится ненамагниченным
(размагничивается). Чем больше коэрцитивная
сила, тем "прочнее" магнитный материал
удерживает остаточную намагниченность.
(BH)max (МГсЭ) - магнитная энергия, полная плотность энергии, максимальное энергетическое произведение. Определяет, насколько сильным является магнит. Чем больше данная величина, тем более мощным является магнит.
Tc of Br (% на ºС) - температурный коэффициент остаточной магнитной индукции. Определяет, насколько сильно магнитная индукция изменяется от температуры. Величина -0.20 означает, что если температура увеличится на 100 градусов Цельсия, магнитная индукция уменьшится на 20%.
Tmax (ºС) - максимальная рабочая температура. Определяет предел температуры, при которой магнит временно теряет часть своих магнитных свойств. При снижении температуры магнит полностью восстанавливает все магнитные свойства.
Tcur
(ºС) - температура
Кюри. Определяет предел температуры,
при которой магнит полностью размагничивается.
При снижении температуры магнит не восстанавливает
магнитные свойства. Если магнит нагревается
в пределах от Tmax до Tcur, при
снижении температуры магнитные свойства
восстанавливаются частично.
Виды магнитов.
Постоянные магниты – наиболее привычный нам вид магнитов. Они постоянные в том смысле, что будучи однажды намагничены, эти магниты сохраняют некоторый уровень остаточной намагниченности. Как мы увидим в дальнейшем, разные виды постоянных магнитов имеют различные характеристики или свойства, относящиеся к тому, как легко они размагничиваются, насколько они сильные, как их сила меняется с температурой и т. д.
Материалы, используемые для производства постоянных магнитов.
Материал Br Hc (BH)max Tc of Br Tmax Tcur
Nd-Fe-B 12 800 12 300 40 -0.12 150 310
SmCo 10 500 9 200 26 -0.04 300 750
Альнико 12 500 640 5.5 -0.02 540 860
Керамические
3
900 3 200 3.5
-0.20
300 460
Временные магниты – это магниты, которые действуют как постоянные магниты только тогда, когда находятся в сильном магнитном поле, и теряют свой магнетизм, когда магнитное поле исчезает. В качестве примера можно привести скрепки и гвозди, а также другие изделия из "мягкого" железа.
Электромагниты – это туго намотанные на каркас витки провода, обычно с железным сердечником, который действует как постоянный магнит только тогда, когда по проводу течет ток. Сила и полярность магнитного поля, создаваемого электромагнитом, обусловлены изменением величины и направления электрического тока, текущего по проводу.