Колебания и волны. Оптика. Квантовая и ядерная физика

Автор работы: Пользователь скрыл имя, 23 Февраля 2011 в 22:20, курсовая работа

Описание работы

В задачах данной темы рассматриваются следующие вопросы: определение длины волны де Бройля движущихся частиц, соотношения неопределенностей Гейзенберга, применение уравнения Шредингера для частицы, находящейся в одномерной потенциальной яме с бесконечно высокими стенками, рентгеновское излучение и закон Мозли, закон радиоактивного распада, определение дефекта массы, энергии связи и удельной энергии связи ядра, энергии ядерных реакций.

Содержание работы

Введение…..…………….………………..……………………………….……….4

1. Механические гармонические колебания. Гармонический осциллятор….. 8

2. Корпускулярно-волновой дуализм в микромире. Гипотеза де - Бройля. Некоторые свойства волн де - Бройля. Вероятностный смысл волн де – Бройля………………………………………………………………………………….17

3. Свободные колебания……………………………………..….………………26

4. Электромагнитные волны….. …………………………………..……...…….27

5. Интерференция света ………………………………………...….…...…...….28

6. Дифракция света …………………………………………………...............…29

7. Волновая оптика...…………………………………………………………….29

8. Оптика………………..…….………………….………………….………...….30

9. Основные понятия квантовой механики …....…………………….….……..31

10. Основные понятия квантовой механики ………………….……………….32

11. Квантовая физика. Строение атома ……………..........................................33

12. Ядерная физика ………...……………………...………………..….………..34

Заключение..……………………………………………………….……………..36

Литература……………………………………………..………………………...37

Приложения…………………………………………………………………..….38

Файлы: 1 файл

КР по физике.doc

— 1.70 Мб (Скачать файл)

     или

                                 (1.6)

     Сложив (1.3) и (1.5), получим формулу для  полной энергии:

                                              (1.7)

     Полная  энергия остается постоянной, так  как при гармонических колебаниях справедлив закон сохранения механической энергии, поскольку упругая сила консервативна.

     Из  формул (1.4) и (1.6) следует, что Т и  П изменяются с частотой 2w0, т.е. с частотой, которая в два раза превышает частоту гармонического колебания. На рис. 3 представлены графики зависимости x, T и П от времени. Так как ásin2 = ácos2 = 1/2, то из формул (1.3), (1.5) и (l.7) следует, что áTñ = áПñ = ½ E.

     

Рисунок 3

     Гармонический осциллятор.

     Гармоническим осциллятором называется система, совершающая  колебания, описываемые уравнением вида (6);

           (2.1)

     Колебания гармонического осциллятора являются важным примером периодического движения, и служат точной или приближенной моделью во многих задачах классической и квантовой физики. Примерами гармонического осциллятора являются пружинный, физический и математический маятники, колебательный контур. Рассмотрим два из этих примера.

     Пружинный маятник — это груз массой , подвешенный на абсолютно- упругой пружине и совершающий гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины (рис. 4). Уравнение движения маятника

     

 или 

     Из  выражений (2.1) и (1) следует, что пружинный  маятник совершает гармонические колебания по закону с циклической частотой

                                     (2.2)

     и периодом

                                                     (2.3)

     Формула (2.3) справедлива для упругих колебаний  в пределах, в которых выполняется закон Гука, т. е. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (1.5) и (2.2), равна

     

     

Рисунок 4.

     Физический  маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела.

     Если  маятник отклонен из положения равновесия на некоторый угол a, то в соответствии с уравнением динамики вращательного движения твердого тела момент M возвращающей силы можно записать в виде

               (2.4)

     где J — момент инерции маятника относительно оси, проходящей через точку подвеса О, l – расстояние между ней и центром масс маятника, Ft= –mg sina » –mga. — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina »a соответствует малым колебаниям маятника, т.е. малым отклонениям маятника из положения равновесия). Уравнение (2.4) можно записать в виде

     

 или 

    Принимая

                                     (2.5)

получим уравнение

     

идентичное  с (2.1), решение которого (1) известно:

           (2.6)

     Из  выражения (2.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см. (2.5)) и периодом

            ,             (2.7)

где L=J/(ml) — приведенная длина физического маятника.

     Точка О' на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 5). Применяя теорему Штейнера, получим

     

,

т. е. ОО' всегда больше ОС. Точка подвеса  О маятника и центр качаний О' обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса станет новым центром качаний, и период колебаний физического маятника не изменится.

     

Рисунок 5.

     Математический  маятник — это идеализированная система, состоящая из материальной точки массой , подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести (рис. 6).

     

Рисунок 6.

     Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника

            ,     (2.8)

     где l — длина маятника.

     Так как математический маятник можно  представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (2.8) в формулу (17), получим выражение для периода малых колебаний математического маятника

                                                     (2.9)

     Сравнивая формулы (2.7) и (2.9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Следовательно, приведенная длина физического маятника — это длина такого математического маятника, период колебаний которого совпадает с периодом колебаний данного физического маятника. 

     2. Корпускулярно-волновой дуализм в микромире. Гипотеза де - Бройля. Некоторые свойства волн де - Бройля. Вероятностный смысл волн де - Бройля. 

     Французский ученый Луи де Бройль (1892—1987), осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами.

     Итак, согласно де Бройлю, с каждым микрообъектом  связываются, с одной стороны, корпускулярные характеристики — энергия Е и импульс p, а с другой — волновые характеристики — частота n и длина волны l. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов:

                                     (3.1)

     Смелость  гипотезы де Бройля заключалась именно в том, что соотношение (3.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля:

                                                            (3.2)

     Это соотношение справедливо для  любой частицы с импульсом  р.

     Вскоре  гипотеза де Бройля была подтверждена экспериментально. В 1927 г. американские физики К. Дэвиссон (1881—1958) и Л. Джермер (1896—1971) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки — кристалла никеля, — дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа — Брэггов, а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (3.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия  »50 кэВ) через металлическую фольгу (толщиной »1 мкм).

     Так как дифракционная картина исследовалась  для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. российскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности.

     Впоследствии  дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать движение микрочастиц в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой по формуле де Бройля (3.2). Открытие волновых свойств микрочастиц привело к появлению и развитию новых методов исследования структуры веществ, таких, как электронография и нейтронография, а также к возникновению новой отрасли науки — электронной оптики.

     Экспериментальное доказательство наличия волновых свойств  микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства должны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с l = 6,62×10–31 м. Такая длина волны лежит за пределами доступной наблюдению области (периодических структур с периодом d»10–31 м не существует). Поэтому считается, что макроскопические тела проявляют только одну сторону своих свойств — корпускулярную — и не проявляют волновую.

     Представление о двойственной корпускулярно-волновой природе частиц вещества углубляется еще тем, что на частицы вещества переносится связь между полной энергией частицы e и частотой n волн де Бройля:

                                                           (3.3)

     Это свидетельствует о том, что соотношение  между энергией и частотой в формуле (3.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (3.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике.

     Подтвержденная  экспериментально гипотеза да Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микрообъектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами академика В. А. Фока (1898—1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна—частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно.» (в сб.: Философские вопросы современной физики. — М.: Изд-во АН СССР, 1959).

Информация о работе Колебания и волны. Оптика. Квантовая и ядерная физика