Элементарные частицы, их классификация и основные свойства.

Автор работы: Пользователь скрыл имя, 11 Апреля 2010 в 17:09, Не определен

Описание работы

Введение. Мир элементарных частиц.
Фундаментальные физические взаимодействия.
Гравитация.
Электромагнитное взаимодействие.
Слабое взаимодействие.
Сильное взаимодействие.

Классификация элементарных частиц.
Характеристики субатомных частиц.
История открытия элементарных частиц.
Лептоны.
Адроны.
2.5. Теория кварков.
2.6. Частицы – переносчики взаимодействий.
3. Теории элементарных частиц.
3.1. Квантовая электродинамика.
3.2. Теория электрослабого взаимодействия.
3.3. Квантовая хромодинамика.
3.4. На пути к… Великому объединению.
Список использованной литературы.

Файлы: 1 файл

Элементарные частицы.doc

— 179.50 Кб (Скачать файл)

      Лептонный заряд (лептонное число) — внутренняя характеристика лептонов. Он обозначается буквой L. Для лептонов он равен +1, а для антилептонов -1. Различают: электронный лептонный заряд, которым обладают только электроны, позитроны, электронные нейтрино и антинейтрино; мюонный лептонный заряд, которым обладают только мюоны и мюонные нейтрино и антинейтрино; лептонный заряд тяжелых лептонов и их нейтрино. Алгебраическая сумма лептонного заряда каждого типа с очень высокой точностью сохраняется при всех взаимодействиях.

      Барионный заряд (барионное число) — одна из внутренних характеристик барионов. Обозначается буквой B. У всех барионов B = +1, а у их античастиц B = -1 (у остальных  элементарных частиц B = 0). Алгебраическая сумма барионных зарядов, входящих в систему частиц, сохраняется при всех взаимодействиях.

      Странность  — целое (нулевое, положительное  или отрицательное) квантовое число, характеризующее адроны. Странность частиц и античастиц противоположны по знаку. Адроны с Ѕ, равным 0, называются странными. Странность сохраняется в сильном и электромагнитном взаимодействиях, но нарушается в слабом взаимодействии.

      «Очарование» (шарм) — квантовое число, характеризующее  адроны (или кварки). Оно сохраняется  в сильном и электромагнитном взаимодействиях, но нарушается слабым взаимодействием. Частицы с ненулевым значением «очарование» называются «очарованными» частицами.

      Магнетон  — единица измерения магнитного момента в физике атома, атомного ядра и элементарных частиц. Магнитный момент, обусловленный орбитальным движением электронов в атоме и их спином, измеряется в магнетонах Бора. Магнитный момент нуклонов и ядер измеряется в ядерных магнетонах.

      Четность  — еще одна характеристика субатомных частиц. Четность — это квантовое число, характеризующее симметрию волновой функции физической системы или элементарной частицы при некоторых дискретных преобразованиях: если при таком преобразовании функция не меняет знака, то четность положительна, если меняет, то четность отрицательна. Для абсолютно нейтральных частиц (или систем), которые тождественны своим античастицам, кроме четности пространственной, можно ввести понятия зарядовой четности и комбинированной четности (для остальных частиц замена их античастицами меняет саму волновую функцию).

      Пространственная  четность — квантовомеханическая характеристика, отражающая свойства симметрии элементарных частиц или их систем при зеркальном отражении (пространственной инверсии). Эта четность обозначается буквой  Р и сохраняется во всех взаимодействиях, кроме слабого.

      Зарядовая четность — четность абсолютной нейтральной элементарной частицы или системы, соответствующая операции зарядового сопряжения. Зарядовая четность также сохраняется во всех взаимодействиях, кроме слабого.

      Комбинированная четность — четность абсолютно нейтральной частицы (или системы) относительно комбинированной инверсии. Комбинированная четность сохраняется во всех взаимодействиях, за исключением распадов долгоживущего нейтрального К - мезона, вызванных слабым взаимодействием (причина этого нарушения комбинированной четности пока не выяснена).

2.2. История открытия  элементарных частиц.

      Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, т. е. неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Но примерно с середины XIX века стали появляться экспериментальные факты, которые ставили под сомнение представления о неделимости атомов. Результаты этих экспериментов наводили на мысль о том, что атомы имеют сложную структуру и что в их состав входят электрически заряженные частицы. Это подтвердил французский физик Анри Беккерель, который в 1896 году открыл явление радиоактивности.

      Затем последовало открытие первой элементарной частицы английским физиком Томсоном в 1897 году. Это был электрон, который окончательно обрел статус реального физического объекта и стал первой известной элементарной частицей в истории человечества. Его масса примерно в 2000 раз меньше массы атома водорода и равна:

m = 9.11*10^(-31) кг.

      Отрицательный электрический заряд электрона  называется элементарным и равен:

e = 0.60*10^(-19) Кл.

      Анализ атомных спектров показывает, что спин электрона равен 1/2, а его магнитный момент равен одному магнетону Бора. Электроны подчиняются статистике Ферми, так как они обладают полуцелым спином. Это согласуется с экспериментальными данными о структуре атомов и о поведении электронов в металлах. Электроны участвуют в электромагнитных, слабых и гравитационных взаимодействиях.

      Второй  открытой элементарной частицей был  протон (от греч. protos — первый). Эту  элементарную частицу открыл в 1919 году Резерфорд, исследуя продукты расщепления ядер атомов различных химических элементов. В буквальном смысле протон – ядро атома самого легкого изотопа водорода — протия. Спин протона равен 1/2. Протон обладает положительным элементарным зарядом  +e. Его масса равна:

m = 1.67*10^(-27) кг.

      или примерно 1836 масс электрона. Протоны  входят в состав ядер всех атомов химических элементов. После этого в 1911 году Резерфордом была предложена планетарная  модель атома, которая помогла ученым в дальнейших исследованиях состава атомов.

      В 1932 году Дж. Чедвик открыл третью элементарную частицу нейтрон (от лат. neuter — ни тот, ни другой), который не имеет  электрического заряда и обладает массой примерно 1839 масс электрона. Спин нейтрона также равен 1/2.

      Вывод о существовании частицы электромагнитного поля — фотона — берёт своё начало с работы М. Планка (1900 год). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантованна (т.е. состоит из квантов), Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905 год) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существования фотона были даны Р. Милликеном в 1912 — 1915 годах и А. Комптоном  в 1922 году.

      Открытие  нейтрино — частицы, почти не взаимодействующей  с веществом, ведёт своё начало от теоретической догадки В. Паули в 1930 году, позволившей за счёт предположения о рождении такой частицы устранить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 году  Ф. Райнесем и К. Коуэном.

      Но  в веществе состоят не только частицы. Также существуют античастицы —  элементарные частицы, имеющие те же массу, спин, время жизни и некоторые  другие внутренние характеристики, что  и их «двойники»-частицы, но отличающиеся от частиц знаками электрического заряда и магнитного момента, барионного заряда, лептонного заряда, странности и др. Все элементарные частицы, кроме абсолютно нейтральных, имеют свои античастицы.

      Первой  открытой античастицей стал позитрон (от лат. positivus — положительный) —  частица с массой электрона, но положительным электрическим зарядом. Эта античастица была обнаружена в составе космических лучей американским физиком Карлом Дейвидом Андерсоном в 1932 году. Интересно то, что существование позитрона было теоретически предсказано английским физиком Полем Дираком почти за год до экспериментального открытия. Более того, Дирак предсказал так называемые процессы аннигиляции (исчезновения) и рождения электронно-позитронной пары. Сама по себе аннигиляция пары — один из видов превращений элементарных частиц, происходящий при столкновении частицы с античастицей. При аннигиляции частица и античастица исчезают, превращаясь в другие частицы, число и сорт которых лимитируются законами сохранения. Процесс, обратный аннигиляции, — рождение пары. Сам по себе позитрон стабилен, но в веществе из-за аннигиляции с электронами существует очень короткое время. Аннигиляция электрона и позитрона заключается в том, что они при встрече исчезают, превращаясь в γ-кванты (фотоны). А при столкновении γ-кванта с каким-либо массивным ядром происходит рождение электронно-позитронной пары.

      В 1955 году была обнаружена еще одна античастица  — антипротон, а несколько позже  — антинейтрон. Антинейтрон, так  же как и нейтрон, не имеет электрического заряда, но он, бесспорно, относится к античастицам, поскольку участвует в процессе аннигиляции и рождения пары нейтрон — антинейтрон.

      Возможность получения античастиц привела ученых к идее о создании антивещества. Атомы антивещества должны быть построены  таким образом: в центре атома  — отрицательно заряженное ядро, состоящее из антипротонов и антинейтронов, а вокруг ядра обращаются позитроны, имеющие положительный заряд. В целом атом также получается нейтрален. Эта идея получила блестящее экспериментальное подтверждение. В 1969 году на ускорителе протонов в городе Серпухове советские физики получили ядра атомов антигелия. Также в 2002 году на ускорителе ЦЕРНа в Женеве было получено 50000 атомов антиводорода. Но, несмотря на это, скопления антивещества во Вселенной пока не обнаружены. Также становится ясно, что при малейшем взаимодействии антивещества с любым веществом произойдет их аннигиляция, которая будет сопровождаться огромным выбросом энергии, в несколько раз превосходящей энергию атомных ядер, что крайне небезопасно для людей и окружающей среды.

      В настоящее время экспериментально обнаружены античастицы почти всех известных элементарных частиц.

      Большую роль в физике элементарных частиц играют законы сохранения, устанавливающие  равенство между определенными  комбинациями величин, характеризующих начальное и конечное состояние системы. Арсенал законов сохранения в квантовой физике больше, чем в классической. Он пополнился законами сохранения различных четностей (пространственной, зарядовой), зарядов (лептонного, барионного и др.), внутренних симметрий, свойственных тому или иному типу взаимодействия.

      Выделение характеристик отдельных субатомных частиц — важный, но только начальный  этап познания их мира. На следующем  этапе нужно еще понять, какова роль каждой отдельной частицы, каковы ее функции в и структуре материи.

      Физики  выяснили, что прежде всего свойства частицы определяются ее способностью (или неспособностью) участвовать  в сильном взаимодействии. Частицы, участвующие в сильном взаимодействии, образуют особый класс и называются адронами. Частицы, участвующие в слабом взаимодействии и не участвующие в сильном, называются лептонами. Кроме того, существуют частицы-переносчики взаимодействий.

2.3. Лептоны.

      Лептоны считаются истинно элементарными  частицами. Хотя лептоны могут иметь  электрический заряд, а могут и не иметь, спин у всех у них равен 1/2. Среди лептонов наиболее известен электрон. Электрон — это первая из открытых элементарных частиц. Как и все остальные лептоны, электрон, по-видимому, является элементарным (в собственном смысле этого слова) объектом. Насколько известно, электрон не состоит из каких-то других частиц.

      Другой  хорошо известный лептон — нейтрино. Нейтрино являются наиболее распространенными  частицами по Вселенной. Вселенную  можно представить безбрежным нейтринным морем, в котором изредка встречаются острова в виде атомов. Но несмотря на такую распространенность нейтрино, изучать их очень сложно. Как мы уже отмечали, нейтрино почти неуловимы. Не участвуя ни в сильном, ни в электромагнитном взаимодействиях, они проникают через вещество, как будто его вообще нет. Нейтрино —  это некие "призраки физического мира".

      Достаточно  широко распространены в природе  мюоны, на долю которых приходится значительная часть космического излучения. Во многих отношениях мюон напоминает электрон: имеет тот же заряд и спин, участвует в тех те взаимодействиях, но имеет большую массу (около 207 масс электрона) и нестабилен. Примерно за две миллионные доли секунды мюон распадается на электрон и два нейтрино. В конце 70-х годов был обнаружен третий заряженный лептон, получивший название "тау-лептон". Это очень тяжелая частица. Ее масса около 3500 масс электрона. Но во всем остальном он ведет себя подобно электрону и мюону.

Информация о работе Элементарные частицы, их классификация и основные свойства.