Автор работы: Пользователь скрыл имя, 14 Октября 2009 в 13:19, Не определен
Определение диэлектрических проницаемостей жидкостей и поляризуемости неполярных молекул резонансным методом
Министерство Образования Российской Федерации
Балтийский
Государственный Технический
им. Д. Ф.
Устинова «ВОЕНМЕХ»
учебная дисциплина:
ФИЗИКА
ЭЛЕКТРОМАГНЕТИЗМ
Лабораторная работа №4
«Определение
диэлектрических проницаемостей жидкостей
и поляризуемости неполярных молекул
резонансным методом»
Выполнил:
Студентка группы
Проверил:
Санкт-Петербург
2009г.
Цель задания 1: Определение диэлектрических проницаемостей жидкостей и поляризуемости неполярной молекулы резонансным методом.
Цель задания 2: Расчет резонансных кривых для силы тока в колебательном контуре с использованием ЭВМ и исследования зависимости остроты резонансных кривых от добротности контура.
Описание установки
Основной блок – колебательный контур, содержащий катушку индуктивности L, закрепленную в корпусе из оргстекла И один из измерительных конденсаторов C. Резистор R1 имеет вспомогательное значение и обеспечивает нужный режим работы генератора. Измерительные конденсаторы смонтированы на общей подели и представляют собой коаксиальные цилиндры. Пространство между обкладками цилиндрических конденсаторов заполняется исследуемым диэлектриком. В конденсаторе 1 диэлектриком является воздух, в конденсаторе 2 – керосин, в конденсаторе 3 – масло.
Катушка
индуктивности при помощи
Расчетные формулы
1.Поляризуемость молекулы , где - плотность диэлектрика, - молярная масса диэлектрика, - число Авогадро.
2. Электроемкость колебательного контура , где L – индуктивность контура, - резонансная частота.
3.
Электроемкость
4. Резонансная частота , L – индуктивность катушки, С – емкость конденсатора.
5. Волновое сопротивление
6. Добротность контура , где R – сопротивление резистора.
7.Амплитудное значение силы тока , где амплитудное значение входного напряжения.
Таблица необходимых измерений
Конденсатор 1 | Конденсатор 2 | Конденсатор 3 | |||
v, МГц | U ,B | v, МГц | U ,B | v, МГц | U ,B |
Обработка результатов
Контрольные вопросы
Контрольные ответы
1. Три типа поляризации: Ориентационная – В итоге совместного действия поля и теплового движения возникает преимущественная ориентация дипольных электрических моментов вдоль поля, возрастающая с увеличением напряженности электрического поля и с уменьшением температуры. Электронная – под действием внешнего электрического поля у молекул диэлектриков этого типа возникают индуцированные дипольные моменты, направленные вдоль поля, т. е. по направлению вектора Е. Ионная – происходит в твердых диэлектриках, имеющих ионную кристаллическую решетку. Внешнее электрическое поле вызывает в таких диэлектриках смещение всех + ионов в направлении напряженности поля, а всех - ионов в противоположную сторону.
Неполярный диэлектрик (с неполярными молекулами) – в отсутствии внешнего электрического поля «центры тяжести в молекулах этого диэлектрика совпадают(l=0) и дипольные моменты молекул равны 0. Полярный диэлектрик (с полярными молекулами) – диэлектрик, молекулы которого имеют электроны, расположенные не симметрично относительно атомных ядер (Н2О, спирты).
2. Количественной мерой поляризации диэлектрика служит вектор Р, называемый паляризованностью (вектором поляризации) и равный отношению электрического дипольного момента малого объема диэлектрика к этому объему , где р – электрический дипольный момент , n – общее число молекул.
D –вектор, электрическое смещение
P – вектор, поляризованность
E – вектор, напряженность
3. Электроемкость – скалярная величина С, равная абсолютному значению отношения электрического заряда одного проводника к разности электрических потенциалов двух проводников(проводники имеют одинаковые по модулю, но разные по знаку заряды).
Электроемкость двух проводников зависит от их формы, размеров, взаимного расположения, а так же от диэлектрических свойств окружающей среды.
Цилиндрический конденсатор – состоит из двух соосных тонкостенных металлических цилиндров высотой h, и радиусов и , вставленных друг в друга. если зазор между обкладками конденсатора
4.
Резонанс – явление резкого возрастания
амплитуды силы тока в колебательном контуре.
Амплитуда силы тока в контуре зависит от амплитуды входного напряжения, параметров контура L, C, R и циклической частоты . Резонансная частота для силы тока совпадает с собственной частотой колебаний в контуре.