Автор работы: Пользователь скрыл имя, 08 Апреля 2013 в 21:15, реферат
Измерение – это нахождение опытным путем с оцененной точностью значения заранее выбранной физической величины путем сравнения ее с эталонной величиной. Электрические измерения осуществляются с помощью электроизмерительных приборов (ЭИП).
Объектами электрических измерений могут быть как электрические и магнитные величины, так и неэлектрические величины (такие, например, как давление, скорость, температура). Для того чтобы измерить неэлектрическую величину с помощью электроизмерительных приборов, ее надо преобразовать в зависящую от нее электрическую величину. Устройства для измерения неэлектрических величин должны содержать преобразователь, соединительные провода и электроизмерительный прибор, шкала которого проградуирована в единицах измеряемой величины.
Добавочные сопротивления
Рис. 11.
Неизвестное напряжение UX = IА·(RД + RА), где RА – внутреннее сопротивление амперметра. Если величины внутреннего и добавочного сопротивлений известны, то, измеряя ток с помощью амперметра, легко вычислить искомое напряжение.
Ваттметр
Для измерения мощности в цепи постоянного тока не требуется специального прибора. Мощность в цепи постоянного тока может быть определена, если известны показания вольтметра и амперметра, т.е. напряжение и ток, и вычислена простым перемножением этих величин:
P = U·I.
В цепи переменного тока мощность зависит не только от величин напряжения и тока, но и от сдвига фаз между ними (подробнее см. раздел «Мощность переменного тока»):
P = U·I·cosφ.
Поэтому для измерения мощности в цепях переменного тока необходим специальный прибор – ваттметр.
Ваттметр электродинамической системы имеет две катушки (сопротивление катушек малó): неподвижную («токовую») К1, включаемую последовательно нагрузке, и подвижную («вольтовую») К2, включаемую параллельно нагрузке. В цепь подвижной катушки включается добавочное сопротивление RД. Сопротивление RД должно быть большим по величине для того, чтобы ток через цепь, содержащую это сопротивление, был незначительным по сравнению с током нагрузки. То есть сопротивление «вольтовой» цепи должно быть большим, как у всякого вольтметра.
Рис. 12.
Схема включения ваттметра (рис. 12): К1 – неподвижная («токовая») катушка («цепь тока»); К2 – подвижная («вольтовая») катушка («цепь напряжения»); RH – сопротивление нагрузки; RД – добавочное сопротивление в цепи подвижной катушки.
Как видно из схемы, через неподвижную катушку проходит тот же ток, что и через сопротивление нагрузки (I1(t)), а через подвижную протекает ток, пропорциональный напряжению на нагрузке. Таким образом, мгновенное значение тока неподвижной катушки равно току нагрузки, а ток подвижной катушки пропорционален напряжению на нагрузке и должен совпадать с ним по фазе. Чтобы ток совпадал по фазе с напряжением, добавочное сопротивление RД должно быть безиндуктивным, т.е. чисто активным сопротивлением. Величина этого сопротивления должна быть много больше индуктивного сопротивления катушки К2. В таком случае можно считать все сопротивление цепи напряжения активным и ток I2(t) в подвижной катушке будет равен
(10) |
где U0 – амплитуда напряжения на нагрузке, w – частота переменного тока, j – сдвиг фаз между током и напряжением на нагрузке. Как уже было отмечено выше, сдвиг фаз между током в подвижной и неподвижной катушках будет равен сдвигу фаз между током и напряжением на нагрузочном сопротивлении только в том случае, когда сопротивление «вольтовой» цепи ваттметра можно считать активным.
Согласно закону Ампера, сила, действующая на элемент тока со стороны другого элемента тока, пропорциональна величине каждого из элементов тока. Следовательно, мгновенный вращающий момент M(t), действующий на подвижную катушку, пропорционален произведению токов в подвижной и неподвижной катушках:
M(t) = с·I1(t)·I2(t), |
(11) |
где с – константа
Подставляя в формулу (11) выражение для тока в подвижной катушке (10), получаем:
(12) |
Усредняя M(t) за период Т, находим:
(13) |
Таким образом, вращающий момент, действующий на подвижную катушку, и, следовательно, угол ее поворота, пропорционален средней мощности в цепи переменного тока.
Реальный ваттметр имеет 4 клеммы, на принципиальной схеме они обозначены буквами A, B, C и D. При включении ваттметра в цепь переменного тока, на вращающий момент не влияет одновременное изменение направления тока в обеих катушках, но если поменять направление тока только в одной катушке, то направление вращающего момента изменится на 180°. Для предотвращения неправильного включения ваттметра клеммы, соответствующие относительным «началам» каждой катушки, отмечены звездочкой (*). Эти клеммы называют генераторными. Стрéлка ваттметра отклоняется в нужную сторону, если обе эти клеммы присоединены к одному полюсу источника. Обычно эти клеммы уже соединены вместе проводом (A и B). Клеммы A и D подсоединяют к источнику напряжения, а нагрузку включают между клеммами C и D.
Многопредельные ваттметры имеют раздельные переключатели напряжения и тока для «вольтовой» и «токовой» обмоток. Изменение пределов измерения по току осуществляется путем последовательного или параллельного включения двух половин неподвижной катушки, а по напряжению – включением добавочных сопротивлений в цепь подвижной катушки. Для таких приборов предел измерения по мощности в ваттах равен произведению пределов измерения по току в амперах и по напряжению в вольтах. В общем случае предельная нагрузка ваттметра и конечное значение шкалы у ваттметра не совпадают в отличие от большинства других приборов. При чисто реактивной нагрузке сдвиг фаз между током и напряжением j = 90°. В этом случае ваттметр легко вывести из строя, так как при любой силе тока, протекающего через ваттметр, его показание будет всегда равно нулю (cоsj = 0). Обычные ваттметры рассчитаны на измерения, при которых соsj > 0,8. Исключение составляют ваттметры, специально предназначенные для малых значений соsj (малокосинусные ваттметры).
Рис. 13.
На рис. 13 изображена верхняя панель многопредельного ваттметра класса точности 1,5. При данном положении переключателей предельное (номинальное) значение измеряемой мощности будет PНОМ = 300 В · 2 А = 600 Вт. Варьируя положение переключателей, предел измерения данного ваттметра можно изменять от 75 Вт до 1800 Вт.
При работе с многопредельными ваттметрами нужно внимательно рассчитывать цену одного деления шкалы ЦД. Цена деления шкалы равна отношению номинального значения мощности (предел измерения ваттметра) к общему числу делений N на шкале прибора: ЦД = PНОМ/N. Для прибора, изображенного на рис. 13, цена деления ЦД = 600 Вт/150 дел. = 4 Вт/дел.
Численное значение измеряемой мощности PИЗМ равно цене деления, умноженной на число делений по шкале (в данном случае ваттметр показывает 100 делений): PИЗМ = 4 Вт/дел. ´ 100 дел. = 400 Вт.
Так же, как и для других электроизмерительных приборов, величина как абсолютной, так и относительной погрешности, зависит от выбранного предела измерений.
При положении переключателей, изображенном на рис. 13, абсолютная погрешность DP измеренной мощности будет, согласно формуле (4):
а относительная погрешность g0 измерения мощности, согласно (6):
Если проводить измерения при другом положении переключателей (рис. 14), то ту же самую величину мощности (400 Вт) можно измерить тем же ваттметром с меньшей погрешностью.
Рис. 14.
Предел измерения ваттметра (номинальное значение мощности) в данном случае будет: PНОМ = 150 В ´ 3 А = 450 Вт,
цена деления: ЦД = 450 Вт / 150 дел. = 3 Вт/дел.,
абсолютная погрешность: DP = (gКЛ.Т.·PНОМ)/100 = (1,5·450)/100 = 6,75 (Вт),
относительная погрешность:
Таким образом, выбор наиболее подходящего предела измерения приводит к уменьшению как абсолютной, так и относительной погрешности.
Читайте также раздел «Приложения».