Автор работы: Пользователь скрыл имя, 24 Июля 2009 в 19:27, Не определен
Про тело, которое после натирания притягивает к себе другие тела, говорят, что оно наэлектризовано
Все это дает возможность сформулировать понятие химического элемента как вида атомов, характеризующихся определенным зарядом ядра. Среди изотопов различных элементов были найдены такие, которые содержат в ядре при разном числе протонов одинаковое общее число нуклонов, то есть атомы которых обладают одинаковой массой. Такие изотопы были названы изобарами (от греческого слова “барос”, что означает “вес”). Различная химическая природа изобаров убедительно подтверждает то, что природа элемента обуславливается не массой его атома.
Для различных изотопов применяются названия и символы самих элементов с указанием массового числа, которое следует за названием элемента или обозначается в виде индекса вверху слева от символа, например : хлор - 35 или Cl.
Различные изотопы отличаются друг от друга устойчивостью. 26 элементов имеют лишь по одному устойчивому изотопу - такие элементы называются моноизотопными, (они характеризуются преимущественно нечетными атомными номерами), и атомные массы их приблизительно равны целым числам. У 55 элементов имеется по несколько устойчивых изотопов - они называются полиизотопными (большое число изотопов характерно преимущественно для элементов с четными номерами). У остальных элементов известны только неустойчивые, радиоактивные изотопы. Это все тяжелые элементы, начиная с элемента №84 (полоний), а из относительно легких - №43 (технеций) и №61 (прометий). Однако радиоактивные изотопы некоторых элементов относительно устойчивы (характеризуются большим периодом полураспада), и поэтому эти элементы, например торий, уран, встречаются в природе. В большинстве же радиоактивные изотопы получают искусственно, в том числе и многочисленные радиоактивные изотопы устойчивых элементов.
9. Электронные оболочки атомов. Теория Бора.
По теории Резерфорда, каждый электрон вращается вокруг ядра, причем сила притяжения ядра уравновешивается центробежной силой, возникающей при вращении электрона. Вращение электрона совершенно аналогично его быстрым колебаниям и должно вызвать испускание электромагнитных волн. Поэтому можно предположить, что вращающийся электрон излучает свет определенной длины волны, зависящий от частоты обращения электрона по орбите. Но, излучая свет, электрон теряет часть своей энергии, вследствие чего нарушается равновесие между ним и ядром. Для восстановления равновесия электрон должен постепенно передвигаться ближе к ядру, причем так же постепенно будет изменяться частота обращения электрона и характер испускаемого им света. В конце концов, исчерпав всю энергию, электрон должен "упасть" на ядро, и излучение света прекратится. Если бы на самом деле происходило подобное непрерывное изменение движения электрона, его "падение" на ядро означало бы разрушение атома и прекращения его существования.
Таким образом, наглядная и простая ядерная модель атома, предложенная Резерфордом, явно противоречила классической электродинамике. Система вращающихся вокруг ядра электронов не может быть устойчивой, так как электрон при таком вращении должен непрерывно излучать энергию, что, в свою очередь, должно привести к его падению на ядро и к разрушению атома. Между тем атомы являются устойчивыми системами.
Эти существенные противоречия частично разрешил выдающийся датский физик Нильс Бор (1885 - 1962), разработавший в 1913 году теорию водородного атома, в основу которой он положил особые постулаты, связав их, с одной стороны, с законами классической механики и, с другой стороны, с квантовой теорией излучения энергии немецкого физика Макса Планка (1858 - 1947).
Сущность теории квантов сводится к тому, что энергия испускается и поглощается не непрерывно, как принималось раньше, а отдельными малыми, но вполне определенными порциями - квантами энергии. Запас энергии излучающего тела изменяется скачками, квант за квантом; дробное число квантов тело не может ни испускать, ни поглощать.
Величина кванта энергии зависит от частоты излучения: чем больше частота излучения, тем больше величина кванта. Обозначая квант энергии через Е, запишем уравнение Планка:
Е = h
где h - постоянная величина, так называемая константа Планка, равная 6,626*10 Дж*с., а - частота волны Деброиля.
Кванты лучистой энергии называются также фотонами. Применив квантовые представления к вращению электронов вокруг ядра, Бор положил в основу своей теории очень смелые предположения, или постулаты. Хотя эти постулаты и противоречат законам классической электродинамики, но они находят свое оправдание в тех поразительных результатах, к которым приводят, и в том полнейшем согласии, которое обнаруживается между теоретическим результатами и огромным числом экспериментальных фактов. Постулаты Бора заключаются в следующем:
Электрон может двигаться вокруг не по любым орбитам, а только по таким, которые удовлетворяют определенными условиям, вытекающим из теории квантов. Эти орбиты получили название устойчивых, стационарных или квантовых орбит. Когда электрон движется по одной из возможных для него устойчивых орбит, то он не излучает электромагнитной энергии. Переход электрона с удаленной орбиты на более близкую сопровождается потерей энергии. Потерянная атомом при каждом переходе энергия превращается в один квант лучистой энергии. Частота излучаемого при этом света определяется радиусами тех двух орбит, между которыми совершается переход электрона. Обозначив запас энергии атома при положении электрона на более удаленной от ядра орбите через Ен, а на более близкой через Ек и разделив потерянную атомом энергию Ен - Ек на постоянную Планка, получим искомую частоту:
= (Ен - Ек ) / h
Чем больше расстояние от орбиты, на которой находится электрон, до той, на которую он переходит, тем больше частота излучения. Простейшим из атомов является атом водорода, вокруг ядра которого вращается только один электрон. Исходя из приведенных постулатов, Бор рассчитал радиусы возможных орбит для этого электрона и нашел, что они относятся, как квадраты натуральных чисел: 1 : 2 : 3 : ...: n . Величина n получила название главного квантового числа.