История физики: электромагнетизм

Автор работы: Пользователь скрыл имя, 28 Апреля 2010 в 18:41, Не определен

Описание работы

В 18 веке продолжались работы по электризации тел, начатые Гильбертом. Многочисленные эксперименты, проведенные в различных лабораториях, позволили обнаружить не только новые материалы, способные электризоваться при трении, но и открыть ряд новых свойств этого явления. Англичанин Стивен Грей (1670-1735) показал, что электричество может распространяться по некоторым телам, т.е. ввел понятия проводника и изолятора. Были усовершенствованы устройства для получения электричества - электростатические машины, созданы конденсаторы (лейденская банка).

Файлы: 1 файл

Документ Microsoft Word (5).doc

— 79.00 Кб (Скачать файл)

Фарадей Майкл (22.09.1791–25.08.1867) – английский физик, член Лондонского королевского общества (1824), Петербургской АН (1830). Родился в Лондоне в семье кузнеца. С 12 лет работал разносчиком газет, затем подмастерьем в переплетной мастерской. Учился самостоятельно. В 1813 стал ассистентом Г.Дэви в Королевском институте в Лондоне, в 1825 – директором лаборатории, сменив на этом посту Г.Дэви, в 1833-62 – профессор кафедры химии. 

Работы в области  электричества, магнетизма, магнитооптики, электрохимии. Открытое Фарадеем вращение магнита вокруг проводника с током и проводника с током вокруг магнита стало основой лабораторной модели электродвигателя и наглядно выявило связь между электрическими и магнитными явлениями, что в итоге привело к открытию и установлению законов электромагнитной индукции. Открыл в 1835 экстратоки при замыкании и размыкании. Доказал тождественность различных видов электричества: “животного”, “магнитного”, гальванического, термоэлектричества и электричества, возникающего при трении. В результате работ по исследованию природы электрического тока в растворах кислот, солей и щелочей открыл в 1833 законы электролиза (законы Фарадея), которые были важным аргументом в пользу дискретности электричества. Ввел понятия подвижность, катод, анод, ионы, электролиз, электролиты, электроды, иэобрел вольтметр. В 1845 открыл диамагнетизм, в 1847 – парамагнетизм. Обнаружил вращение плоскости поляризации света в магнитном поле (эффект Фарадея), что явилось доказательством связи света с магнетизмом и положило начало магнитооптике. 

Фарадей первым ввел понятие поля, представление  об электрических и магнитных  силовых линиях. Идея поля кардинально  изменило существовавшее у Ньютона  и его последователей представление о дальнодействии и пространстве, как только пассивном вместилище тел и электрических зарядов. В 1837 обнаружил влияние диэлектриков на электрическое взаимодействие и ввел понятие диэлектрической проницаемости. Высказал идею о распространении электрического и магнитного взаимодействий через промежуточную среду, мысль о единстве сил природы (различных видов энергии) и их взаимном превращении. 

В его честь  названа единица емкости - фарада. 

Первые исследования в области электричества были в основном сосредоточены на активных элементах - источниках электродвижущей силы, а пассивным проводникам практически не уделялось внимания. Ом провел систематические экспериментальные и теоретические исследования проводимости и сформулировал в 1827 г. свои законы в интегральной и дифференциальной формах, введя понятия и точные определения электродвижущей силы, электропроводности и силы тока. 

Ом Георг Симон (16.03.1789-06.07.1854) - немецкий физик, член-корреспондент  Берлинской (1839), член Туринской и  Баварской АН, Лондонского королевского общества (1842), медаль Копли (1841). Родился в Эрлангене в семье слесаря. Окончил Эрлангенский университет, доктор философии (1811). Преподавал математику, затем физику в ряде гимназий. С 1833 - профессор Нюрнбергской высшей политехнической школы (с 1839 - ректор), 1849-52 - Мюнхенского университета. 

Работы в области  электричества, акустики, оптики. В 1826 экспериментально открыл основной закон  электрической цепи (закон Ома), а  в 1827 вывел его теоретически. Установил, что ухо воспринимает как простой тон только звук, вызванный простым гармоническим колебанием, остальные звуки - как основной тон и добавочные - обертона (акустический закон Ома). 

Его именем названа  единица электрического сопротивления - ом. 

При этом Ом проводил свои работы, используя аналогию электрического тока с тепловыми потоками французского математика и физика Жана Батиста Жозефа Фурье (1768-1830) между двумя телами с различной температурой. Однако его работы в течение десяти лет оставались незамеченными. Одновременно с опытами Ома проводили исследования во Франции Антуан Сезар Беккерель (1788-1878), который определил зависимость сопротивления от длины и сечения проводника, и в Англии - Питер Барлоу (1776-1862), подтвердивший постоянство тока во всей цепи. Ряд частных законов, полученных в это время независимо от Ома, в 1845 г. обобщил Кирхгоф в своих правилах. 

Большой толчок к проведению электрических измерений  дало первое практическое использование  электрических явлений в телеграфии. Создание воздушного и подводного телеграфов потребовало разработки новых методов электрических измерений. В 1840 г. Уитстон предложил свой метод моста для точных измерений сопротивлений. Гаусс заложил основы электромагнитной метрики, взяв за основные три механические единицы (времени, длины и массы) и выразив через них все остальные, а также разработав ряд новых приборов. 

Гаусс Карл Фридрих (30.04.1777-23.02.1855) - немецкий математик, астроном и физик, член Лондонского королевского общества (1804), Парижской (1820) и Петербургской АН (1824). Родился в Брауншвейге в семье водопроводчика. Учился в 1795-98 в Гёттингенском университете, в 1799 получил доцентуру в Брауншвейге, с 1807 - профессор Гёттингенского университета и директор астрономической обсерватории. 

Работы во многих областях физики. В 1832 создал абсолютную систему мер, в 1833 совместно с В.Вебером построил первый в Германии электромагнитный телеграф. В 1839 в сочинении "Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния" изложил основы теории потенциала (теорема Остроградского-Гаусса). В 1840 в работе "Диоптрические исследования" разработал теорию построения изображений в сложных оптических системах. В 1845 пришел к мысли о конечности распространения электромагнитных взаимодействий. В 1829 сформулировал принцип наименьшего принуждения (принцип Гаусса). Одним из первых высказал в 1818 гипотезу о существовании неевклидовой геометрии. 

Его именем названа  единица магнитной индукции - гаусс. 

Работу по метрологии продолжили немецкий физик Вильгельм Эдуард Вебер (1804-1891) и Максвелл. В итоге появилась идея создания единой системы мер и в 1881 г. Международный конгресс в Париже установил международные единицы измерения. 

Огромный вклад  в развитие электромагнетизма был сделан работами Майкла Фарадея. Одной из ведущих философских идей физики 19 века было то, что все физические явления представляют собой проявления одной и той же сущности. Следуя этому принципу, в 1831 г. Фарадей обнаружил явление электромагнитной индукции. Он предложил теорию этого явления, впервые введя понятия линий магнитных сил и электромагнитного поля и высказав идею о распространении магнитных возмущений во времени. В 1833 г. американский физик Джозеф Генри (1797-1878) обнаружил явление самоиндукции, а российский ученый Эмиль Христианович Ленц (1804-1865) сформулировал в 1834 г. свое правило о направлении индукционных токов. 

В середине 40-х  годов немецкими учеными Францем  Эрнстом Нейманом (1798-1895), Вебером  и Гельмгольцем были построены теории индукции, учитывающие, что взаимодействие электрических зарядов зависят как от расстояния между ними, так и от скоростей. 

В 1833-34 г.г. Фарадей  установил основные законы электролиза, положив начало электрохимии. Им также  было экспериментально доказано, что  электрическое действие распространяется не только по прямой, но и по кривым линиям, а промежуточная среда существенно влияет на это действие. Таким образом, он подтверждал, что взаимодействие двух тел осуществляется через посредство среды, а не происходит в соответствии с теорией дальнодействия на расстоянии, что использовалось в наиболее простых моделях для математического истолкования явлений. 

В результате опытов со сферическими конденсаторами с различными изолирующими прокладками Фарадей  сформулировал свою теорию диэлектрической поляризации, которая была развита итальянским физиком Оттавиано Фабрицио Моссотти (1791-1863). 

В 1845 г. при пропускании  света через электромагнит Фарадей  обнаружил поворот плоскости  поляризации, что он объяснил присутствием магнитных полей в свете. Также им было обнаружено явление диамагнетизма. 

Помимо многочисленных экспериментальных открытий, в конце  жизни Фарадей в борьбе с атомистическими  представлениями о непрерывности  только пространства выдвигает оригинальную идею: развивая концепцию Босковича, вводит понятие поля. Он говорит, что материя не только взаимопроницаема, но и каждый ее атом простирается на всю солнечную систему, сохраняя свой собственный центр. 

Также велико практическое значение открытий Фарадея, т.к. все  машины современной электротехнической промышленности - генераторы (первый генератор тока был создан самим Фарадеем), трансформаторы, электромоторы - основаны на электромагнитной индукции. Сюда же следует отнести и телефон. 

К 60-м годам 19 века электродинамика благодаря работам Неймана, Вебера и Гельмгольца считалась уже окончательно сформировавшейся наукой с четко определенными границами. Однако оригинальные идеи Фарадей заинтересовали Максвелла, и он задумал придать им математическую форму. Введя понятия токов смещения и напряженности поля, Максвелл сначала создал электродинамику диэлектриков, используя теорию Моссотти. Распространяя эти представления с поправками на магнетизм, он создает и теорию электромагнитной индукции. В итоге все построение сводится к знаменитым шести уравнениям Максвелла. Эти уравнения устанавливают непрерывность явлений, определяют изменения поля в отличие от ньютоновской модели, где законы определяют изменения поведения материальных частиц. Они связывают события, смежные в пространстве и во времени. Многие усматривали ряд логических ошибок и непоследовательностей при построении Максвеллом теории. Но она очень многое объясняла, и к концу 19 века крупнейшие физики придерживались мнения, которое высказал Герц: нужно принять уравнения Максвелла как гипотезу, постулаты, на которые и будет опираться вся теория электромагнетизма. 

Герц Генрих Рудольф (22.02.1857-01.01.1894) - немецкий физик, член-корреспондент Берлинской АН (1889), член ряда академий наук и научных  обществ, награды Венской, Парижской, Туринской АН, Лондонского королевского общества и др. Родился в Гамбурге в семье адвоката. Окончил Берлинский университет, степень доктора (1880) и был ассистентом у Г.Гельмгольца. С 1883 - приват-доцент Кильского университета, в 1885-89 - профессор Высшей технической школы в Карлсруэ, с 1889 - Боннского университета. 

Основные работы относятся к электродинамике  и механике. В 1887 в работе "Об очень  быстрых электрических колебаниях" предложил удачную конструкцию  генератора электромагнитных колебаний (вибратор Герца) и метод их обнаружения (резонатор Герца), впервые разработав теорию вибратора, излучающего электромагнитные волны в пространстве. Экспериментально доказал существование электромагнитных волн, распространяющихся в свободном пространстве в соответствии с теорией Максвелла. Придал уравнениям электродинамики симметричную форму, которая наглядно демонстрировала полную взаимосвязь между электрическими и магнитными явлениями (электродинамика Максвелла-Герца). В 1887 наблюдал внешний фотоэффект, заметив, что электрический разряд более интенсивен при облучении электродов ультрафиолетовым светом. В работе "О прохождении катодных лучей через тонкие металлические слои" (1891) открыл проницаемость металлов для катодных лучей, заложив основу для изучения этих лучей и строения вещества. Построил механику с введением неголономных связей, трактовкой механической системы как системы с большим числом степеней свободы и применением принципа кратчайшего пути или наименьшей кривизны. 

Его именем названа  единица частоты - герц. 

Следуя своим  уравнениям и идеям Фарадея о  природе света, Максвелл строит электромагнитную теорию света, описывающую распространение  поперечных электромагнитных волн. Дополнительные предпосылки к этому были также  получены Вебером и Кирхгофом при определении скорости распространения электромагнитной индукции по проводу: она оказалась равной скорости света. К этому времени были обнаружены и исследованы колебания электрического разряда конденсатора в цепи с индукционной катушкой, а в 1884 г. Герц показал, что эти колебания вызывают в пространстве появление волн, состоящих из поляризованных перпендикулярно друг к другу электрических и магнитных колебаний. Он также обнаружил отражение, преломление и интерференцию таких волн. Важным подтверждением электромагнитной теории были опыты русского физика Петра Николаевича Лебедева (1866-1912), который в 1900 г. измерил величину светового давления в полном соответствии с теорией Максвелла. 

Итальянский физик  Аугусто Риги (1850-1920) развил эти работы и их результаты обобщены им в 1897 г. в книге "Оптика электрических явлений", само название которой говорит о революционности такого вывода в развитии физики. 

Одним и самых  замечательных результатов практического  применения электромагнитных волн явилось  изобретение в 1895 г. радиотелеграфии Поповым и итальянским исследователем Гульельмо Маркони (1874-1937). 

Попов Александр  Степанович (16.03.1859-13.01.1906) - русский физик  и электротехник. Родился в п. Турьинские Рудники (Екатеринбургская губерния) в семье священника. Окончил Петербургский университет (1882). В 1883-1901 преподавал в военных заведениях Кронштадта. С 1901 - профессор Петербургского электротехнического института (с 1905 - ректор). 

Работы в области  электротехники и радиотехники. В 1888 повторил опыты Г.Герца и в 1889 впервые указал на возможность использования электромагнитных волн для передачи сигналов. В 1894 сконструировал генератор электромагнитных колебаний и приемник с чувствительным элементом - когерером, а также изобрел первую приемную антенну. Установил, что приемник антенны реагирует на грозовые разряды, и создал грозоотметчик. 7 мая 1895 продемонстрировал свой грозоотметчик на заседании физического отделения Российского физико-химического общества и высказал мысль о возможности его применения для передачи сигналов на расстояние. На заседании 24 марта 1896 продемонстрировал передачу сигналов на расстояние 250 м. Несколько позже Г.Маркони создал подобные приборы, провел с ними эксперименты и положил начало широкому применению радиосвязи, а в 1909 получил за эти работы Нобелевскую премию, когда Попов уже умер. В 1897 обнаружил отражение электромагнитных волн от предметов (кораблей), находящихся на пути их распространения, что было положено в основу радиолокации.

Информация о работе История физики: электромагнетизм