Автор работы: Пользователь скрыл имя, 25 Февраля 2011 в 05:57, реферат
Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадков.
Отсюда
время полного опорожнения
Если будет известен закон изменения площади S по высоте h, то интеграл можно подсчитать. Для призматического сосуда S = const (рис.11), следовательно, время его полного опорожнения
Из
этого выражения следует, что
время полного опорожнения
Рис.11.
Опорожнение призматического
резервуара |
Рис.12. Опорожнение
непризматического резервуара |
Для определения времени истечения жидкости из горизонтального цилиндрического сосуда (цистерны) (рис.12) выразим зависимость переменной площади S от h:
где l - длина цистерны; D - диаметр цистерны.
Тогда время полного опорожнения такой цистерны, т.е. время изменения напора от h1 = D до h2 = 0, получится равным
Во многих водозаборных и водопропускных гидротехнических сооружениях расходы воды проходят через отверстия, перекрываемые затворами. Затворы поднимают на определенную высоту над дном и пропускают через отверстия необходимые расходы. Чаще всего на гидромелиоративных сооружениях устраивают отверстия прямоугольного сечения, истечение из которых и рассмотрим.
Отверстия могут быть незатопленными (истечение свободное) и затопленными, когда уровень воды за затвором влияет на истечение.
Если отверстие незатопленное, то вытекающая из-под затвора струя находится под атмосферным давлением (рис.13). При истечении через затопленное отверстие струя за затвором находится под некоторым слоем воды (рис.14).
Рис.
13. Истечение из-под затвора через незатопленное
отверстие
Когда затвор приподнят над дном, вытекающая из-под него струя испытывает сжатие в вертикальной плоскости. На расстоянии, примерно равном высоте отверстия а (высоте поднятия затвора), наблюдается наиболее сжатое сечение. Глубина в сжатом сечении hc связана с высотой отверстия а следующей зависимостью:
hc = ε'a
где ε'
- коэффициент вертикального
Коэффициент вертикального сжатия ε' зависит от отношения высоты отверстия а к напору (глубине воды перед затвором) Н. Для ориентировочных расчетов можно принимать ε' = 0,64.
Если составить уравнение Бернулли для сечений, проведенных перед затвором и в сжатом сечении, после преобразований получим:
где φ - коэффициент скорости,
где Н0 - напор с учетом скорости подхода,
Тогда расход при истечении из-под затвора при незатопленном отверстии определится по формуле:
где S - площадь отверстия, S = ab.
Рис.14.
Истечение из-под затвора при затопленном
отверстии
При истечении через затопленное отверстие (рис.14) расход определится по формуле:
где hz
- глубина в том сечении, где наблюдается
максимальное сжатие истекающей из-под
затвора струи.
Глубина hz определяется из зависимости
в которой
а hб - глубина в отводящем канале (бытовая глубина).
Если вытекающая из отверстия или насадка струя попадает на неподвижную стенку, то она с определенным давлением воздействует на нее. Основное уравнение, по которому вычисляется давление струи на площадку, имеет вид
На рис.15 приведены наиболее часто встречающиеся в практике ограждающие поверхности (преграды) и уравнения, по которым вычисляется давление струи на соответствующую поверхность.
Величина давления струи, естественно, зависит от расстояния насадка до преграды. С увеличением расстояния струя рассеивается и давление уменьшается. Соответствующие исследования показывают, что в данном случае струя может быть разбита на три характерные части: компактную, раздробленную и распыленную (рис.16).
В пределах компактной части сохраняется цилиндрическая форма струи без нарушения сплошности движения. В пределах раздробленной части сплошность потока нарушается, причем струя постепенно расширяется. Наконец, в пределах распыленной части струи происходит окончательный распад потока на отдельные капли.
Рис.15. Взаимодействие
струи жидкости с неподвижной
поверхностью
Рис. 16.
Составные части свободной
Истечение жидкости из отверстий и насадков (коротких трубок различной формы и сечений) характерно тем, что в этом процессе потенциальная энергия жидкости на очень коротком расстоянии и за очень короткое время превращается в кинетическую энергию струи (или капель в общем случае). При этом происходят какие-то, большие или не очень, потери напора. Подобные режимы течения жидкости возникают при вытекании жидкости из резервуаров, баков, котлов в атмосферу или пространство, заполненное жидкостью. Аналогичные явления происходят при протекании жидкости через малые отверстия и щели в направляющей, контрольной и регулирующей аппаратуре различных гидравлических систем.
Основной
вопрос, на который нужно было найти
ответ, состоял в том, как определить
расход и скорость истечения через
отверстия или насадки
1. Осипов П.Е. Гидравлика, гидравлические машины и гидропривод. М.: Лесная промышленность, 1981, 424 с.
2. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. - М.: Машиностроение, 1975, 559 с.
3. Башта Т.М. и др. Гидравлика, гидромашины и гидроприводы. - М.: Машиностроение, 1982, 423 с.
4.
Лабораторный практикум по
5. Лабораторный курс гидравлики, насосов и гидропередач / Под ред. Руднева С.С. и Подвидза Л.Г. - М.: Машиностроение, 1974, 415 с.
Информация о работе Истечение жидкостей из отверстий и насадков