Автор работы: Пользователь скрыл имя, 23 Ноября 2017 в 18:17, доклад
Все многообразие излучений, исходящих от Солнца, имеет единую природу — это электромагнитные волны. Разнообразие в их свойствах вызвано отличиями в длине волны. Видимая часть спектра солнечного излучения начинается с самых коротких — фиолетовых волн и завершается самыми длинными волнами, которые человеческий глаз воспринимает, как красный цвет.
Немецкий учёный Уильям Гершель в 1800 году обнаружил за красной частью спектра некие невидимые лучи, вызывающее значительное повышение температуры термометра, используемого им для исследования. Это излучение было названо — инфракрасным.
Министерство образования и науки
Новосибирский национальный исследовательский государственный
университет
Юридический факультет
Зеркальная кафедра анестезиологии и реаниматологии института
медицины и психологии медицинского факультета.
Дисциплина БЖД и ГО.
Доклад
На тему: «Инфракрасное (тепловое) излучение. Характеристики теплового излучения и воздействие теплоты на человека. Источники инфракрасного (теплового) излучения в техносфере»
Выполнила:
студентка группы 17904
Дугина Валерия
Проверил:
Карпов Н.В.
Новосибирск – 2017
1.Инфракрасное излучение.
Все многообразие излучений, исходящих от Солнца, имеет единую природу — это электромагнитные волны. Разнообразие в их свойствах вызвано отличиями в длине волны. Видимая часть спектра солнечного излучения начинается с самых коротких — фиолетовых волн и завершается самыми длинными волнами, которые человеческий глаз воспринимает, как красный цвет.
Немецкий учёный Уильям Гершель в 1800 году обнаружил за красной частью спектра некие невидимые лучи, вызывающее значительное повышение температуры термометра, используемого им для исследования. Это излучение было названо — инфракрасным.
Излучение, примыкающее к красной части видимого спектра, не воспринимаемое нашими органами зрения, но обладающее способностью нагревать освещаемые поверхности, было названо инфракрасным. Приставка «инфра» означает «больше». В данном случае — это электромагнитные лучи с длиной волны большей, чем у видимого красного света.
2. Характеристики (свойства) инфракрасного излучения.
Одной из количественных характеристик излучения является интенсивность теплового облучения, которую можно определить как энергию, излучаемую с единицы площади в единицу времени.
Измерение интенсивности тепловых излучений иначе называют актинометрией (от греческих слов асtinos - луч и metrio - измеряю), а прибор, с помощью которого производят определение интенсивности излучения, называется актинометром.
В зависимости от длины волны изменяется проникающая способность инфракрасного излучения. Наибольшую проникающую способность имеет коротковолновое инфракрасное излучение, которое проникает в ткани человека на глубину в несколько сантиметров. Инфракрасные лучи длинноволнового диапазона задерживаются в поверхностных слоях кожи.
Инфракрасное (тепловое) излучение также:
1. Проходит через некоторые непрозрачные тела, также сквозь дождь, дымку, снег.
2. Производит химическое действие на фотопластинки.
3. Поглощаясь веществом, нагревает его.
4. Излучение невидимо.
5. Его регистрируют тепловыми методами, фотоэлектрическими и фотографическими.
Приёмники инфракрасного излучения основаны на преобразовании энергии инфракрасного излучения в другие виды энергии, которые могут быть измерены обычными методами. Существуют тепловые и фотоэлектрические приёмники инфракрасного излучения. В первых поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента приёмника, которое и регистрируется. В фотоэлектрических приёмниках поглощённое инфракрасное излучение приводит к появлению или изменению электрического тока или напряжения.
2.1. Воздействие теплоты на человека
Инфракрасное излучение или тепловое излучение - это вид распространения тепла. Это то же самое тепло, которое Вы чувствуете от горячей печки, солнца или от батареи центрального отопления. Оно не имеет ничего общего ни с ультрафиолетовым излучением, ни с рентгеновским. И считается абсолютно безопасным для человека. Более того, сейчас инфракрасное излучение нашло очень широкое распространение в медицине (хирургия, стоматология, инфракрасные бани), что говорит не только о его безвредности, но и о полезном действии на организм.
В инфракрасном спектре есть область с длинами волн примерно от 7 до 14 мкм (так называемая средневолновая часть инфракрасного диапазона), оказывающая на организм человека по-настоящему уникально-полезное действие. Эта часть инфракрасного излучения соответствует излучению самого человеческого тела, поэтому любое внешнее излучение с такими длинами волн наш организм воспринимает как «своё», поглощает его и оздоровляется.
Существует так же понятие дальнего, или длинноволнового инфракрасного излучения. Оно также оказывает определенное влияние на организм человека. Это влияние разделяют на две составляющих. Первая из них – общеукрепляющее действие, которое помогает организму бороться со многими известными болезнями, усиливает иммунитет, повышает природную сопротивляемость организма, помогает бороться со старостью. Вторая – прямое лечение общих недомоганий, с которыми мы встречаемся повседневно.
Несколько десятилетий назад, учёные в области аэрокосмонавтики проводили исследования по изучению условий существования человека в космосе при невесомости, вакуума, предельных нагрузках и низких температурах. Тогда они обнаружили, что необходимым условием нормальной жизнедеятельности человеческого организма является получение длинноволнового излучения. Поэтому длинноволновые инфракрасные лучи назвали «живительные солнечные лучи». Излучение с данной длиной волн, воздействуют на частицы воды в клетках, возникает эффект «резонанса» усиливающий проникающую способность. При этом происходит стимуляция жизненной активности на клеточном уровне. Инфракрасные лучи проникают более глубоко под кожный покров, при этом повышается температура, которая действует с внутренней стороны на кожный покров. При повышении температуры происходит расширение капилляров, стимулируется кровоток, ускоряется метаболизм, вследствие этого повышается регенеративная деятельность тканей, иммунитет, возникает лечебный эффект.
Инфракрасные волны в диапазоне длинноволнового инфракрасного излучения проходят через воздух, практически не нагревая его. Они способны глубоко проникать непосредственно в тело человека, на клеточный уровень, запуская там ферментативную реакцию. Именно этими волнами будущие матери облучают плод от его зачатия до рождения. Морские черепахи откладывают яйца на песчаных пляжах и зарывают их в песок. Под воздействием длинноволновых инфракрасных лучей солнечного света (только они доходят до кладки яиц) через некоторое время появляются маленькие черепашки. Птицы высиживают свои яйца, используя тепло своего тела вплоть до созревания яйца, таким образом, давая жизнь потомству. Благодаря длинноволновому инфракрасному излучению из белка и желтка формируются ткани нового организма: кости, клетки крови, нервная система и т.д. Современные исследования в области биотехнологий доказали, что именно длинноволновое инфракрасное излучение имеет исключительное значение в развитии всех форм жизни на Земле. По этой причине его называют также биогенетическими лучами.
Наше тело само излучает длинные инфракрасные волны, но оно само нуждается также и в постоянной подпитке длинноволновым теплом. Если это излучение начинает уменьшаться или нет постоянной подпитки им тела человека, то организм подвергается атакам различных заболеваний, человек быстро стареет на фоне общего ухудшения самочувствия. Так как постоянное поглощение инфракрасных лучей способствует приливу сил и здоровью нашего тела, человек интуитивно ищет его источники.
С другой стороны, совсем иной механизм воздействия инфракрасных лучей на организм человека оказывают лучи, относящиеся к коротковолновой части спектра. Они способны проникнуть на глубину нескольких сантиметров, вызывая нагревание внутренних органов.
В месте облучения из-за расширения капилляров может появиться покраснение кожи, вплоть до образования волдырей. Особенно опасны короткие ИК лучи для органов зрения. Они могут спровоцировать образования катаракты, нарушения водно-солевого баланса, появления судорог.
Причиной известного эффекта теплового удара служит именно коротковолновое ИК излучение. Повышение температуры головного мозга на 1 °C уже вызывает его признаки:
тошноту;
учащение пульса;
потемнение в глазах.
Таким образом, инфракрасное излучение - это одна из составляющих частей обычного солнечного света. Практически все живые организмы находятся под воздействием солнца и, следовательно, инфракрасных лучей. Более того, именно без этих лучей наша планета не прогревалась бы до привычных для нас температур, не прогревался бы воздух, на Земле царил бы вечный холод. Инфракрасное излучение – естественный природный вид передачи тепла.
3. Источники теплового изучения.
Любое тело, нагретое до определенной температуры, излучает тепловую энергию в инфракрасном диапазоне спектра электромагнитных волн и может передавать эту энергию посредством лучистого теплообмена другим телам. Передача энергии происходит от тела с более высокой температурой к телу с более низкой температурой, при этом, разные тела имеют различную излучающую и поглощающую способность, которая зависит от природы двух тел, от состояния их поверхности и т.д.
Мощным источником инфракрасного излучения является Солнце, около 50% излучения которого лежит в инфракрасной области.
Значительная доля (от 70 до 80%) энергии излучения ламп накаливания с вольфрамовой нитью приходится на инфракрасное излучение.
При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только инфракрасное излучение.
Специальные фотоплёнки и пластинки - инфрапластинки - также чувствительны к инфракрасному излучению, и потому в инфракрасном излучении могут быть получены фотографии.
Для радиационного обогрева помещений применяют спирали из нихромовой проволоки, нагреваемые до температуры ~ 950 К. Для лучшей концентрации инфракрасного излучения такие нагреватели снабжаются рефлекторами.
В научных исследованиях, например, при получении спектров инфракрасного поглощения в разных областях спектра применяют специальные источники инфракрасного излучения: ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др.
Излучение некоторых оптических квантовых генераторов - лазеров также лежит в инфракрасной области спектра.