Гидроэлектростанции

Автор работы: Пользователь скрыл имя, 29 Декабря 2011 в 04:00, реферат

Описание работы

Гидроэлектростанция (ГЭС) — комплекс сооружений и оборудования, посредством
которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит
из последовательной цепи гидротехнических сооружений, обеспечивающих
необходимую концентрацию потока воды и создание напора, и энергетического.
оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения которая, в свою очередь, преобразуется в электрическую энергию.

Файлы: 1 файл

ГЭС.doc

— 807.50 Кб (Скачать файл)

Министерство  образования и науки Российской Федерации

Ивановский государственный энергетический университет им. Ленина 
 
 
 
 
 
 
 
 
 
 
 

Реферат

по дисциплине введение в электроэнергетику

на тему:

Гидроэлектростанции 
 
 
 
 
 
 

Выполнил: студент группы I-25

Гусев А. В.

Проверил: Воробьев В. Ф. 
 
 
 

Иваново 2011 
 
 

Гидроэлектростанция (ГЭС) — комплекс сооружений и оборудования, посредством

которых энергия потока воды преобразуется  в электрическую энергию. ГЭС  состоит

из последовательной цепи гидротехнических сооружений, обеспечивающих

необходимую концентрацию потока воды и создание напора, и энергетического.

оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения   которая, в свою очередь, преобразуется в электрическую энергию. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.  

Виды  ГЭС.

Гидроэлектрические  станции разделяются в зависимости  от вырабатываемой мощности:

  • мощные — вырабатывают от 25 МВт и выше;
  • средние — до 25 МВт;
  • малые гидроэлектростанции — до 5 МВт.

Мощность  ГЭС зависит от напора и расхода  воды, а также от КПД используемых турбин и генераторов. Из-за того, что  по природным законам уровень  воды постоянно меняется, в зависимости  от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости  от максимального использования  напора воды:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

В зависимости  от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож — вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.  

Гидроэлектрические  станции также разделяются в  зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

  • русловые и плотинные ГЭС. Это наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные гидроэлектростанции. Такие электростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище — такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Необходимый напор воды образуется посредством  строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.  

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения.

В русловых ГЭС  иногда единственным сооружением, пропускающим воду, является

здание ГЭС. В  этих случаях полезно используемая вода последовательно проходит

входное сечение  с мусорозадерживающими решётками, спиральную камеру, идротурбину, отсасывающую трубу, а по спец. водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м   к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС такого типа входят глубинный водоприёмник с мусорозадерживающей решёткой, турбинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнит, сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительные

водосбросы. 

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Особенности ГЭС

  • Себестоимость электроэнергии на российских ГЭС более  чем в два раза ниже, чем на тепловых электростанциях.
  • Турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии.
  • Сток реки является возобновляемым источником энергии.
  • Строительство ГЭС обычно более капиталоёмкое, чем тепловых станций.
  • Часто эффективные ГЭС более удалены от потребителей, чем тепловые станции.
  • Водохранилища часто занимают значительные территории, но примерно с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки).
  • Плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.
  • Водохранилища ГЭС, с одной стороны, улучшают судоходство, но с другой — требуют применения шлюзов для перевода судов с одного бьефа на другой.
  • Водохранилища делают климат более умеренным.

Гидроэнергетика в мире

На 2006 год  гидроэнергетика обеспечивает производство до 88 % возобновляемой и до 20 % всей электроэнергии в мире, установленная гидроэнергетическая мощность достигает 777 ГВт.

Абсолютным  лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии (доля ГЭС в  суммарной выработке — 98 %), Канаде и Швеции. В Парагвае 100 % производимой энергии вырабатывается на гидроэлектростанциях.

Наиболее  активное гидростроительство на начало 2000-х ведёт Китай, для которого гидроэнергия является основным потенциальным  источником энергии. В этой стране размещено  до половины малых гидроэлектростанций  мира, а также крупнейшая ГЭС мира «Три ущелья» на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга» мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир).

На 2008 год  крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в  абсолютных значениях являются следующие  страны:

Страна Потребление гидроэнергии в ТВт·ч
1. Китай 585
2. Канада 369
3. Бразилия 364
4. США 251
5. Россия 167
6. Норвегия 140
7. Индия 116
8. Венесуэла 87
9. Япония 69
10. Швеция 66
11. Франция 63

Гидроэлектростанции России

По состоянию  на 2009 год в России имеется 15 гидроэлектростанций  свыше 1000 МВт (действующих, достраиваемых  или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность, 
ГВт
Среднегодовая 
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская  ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей, г. Саяногорск
Красноярская  ГЭС 6,00 20,40 ОАО «Красноярская  ГЭС» р. Енисей, г. Дивногорск
Братская  ГЭС 4,52 22,60 ОАО Иркутскэнерго, РФФИ р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго,РФФИ р. Ангара, г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара, г. Кодинск
Волжская  ГЭС 2,58 12,30 ОАО РусГидро р. Волга, г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга, г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея, пос. Талакан
Чебоксарская  ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея, г. Зея
Нижнекамская  ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго» р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья, пос. Богородское
Воткинская  ГЭС 1,02 2,60 ОАО РусГидро р. Кама, г. Чайковский
Чиркейская  ГЭС 1,00 2,47 ОАО РусГидро р. Сулак, п. Дубки

Информация о работе Гидроэлектростанции