Фотоэлектронная спектроскопия

Автор работы: Пользователь скрыл имя, 14 Марта 2011 в 09:59, реферат

Описание работы

Диапазон энергий фотонов, используемый в материаловедении ,простирается от ультрафиолета (УФ) до рентгеновского излучения. Практически энергетический диапазон простирается от 10 эВ, что близко к энергии связи электрона в атоме водорода (13,6 эВ), до энергий около 100 кэВ. При этих энергиях фотоны могут, проникая в твердое тело, взаимодействовать с электронами внутренних оболочек.

Файлы: 1 файл

Фотоэлектронная спектроскопия доклад.doc

— 694.00 Кб (Скачать файл)

Министерство  образования и  науки Российской Федерации

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ  ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ППиМЭ

 

Работа на тему:

Фотоэлектронная спектроскопия

                     Факультет: РЭФ

                     Группа: РФ1-32

                     Студент: Косенков В.Е.

                       Преподаватель: Величко А.А.

                     Дата: 19.12.2007

                     Отметка о защите: 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

Новосибирск, 2007

 

Фотоэлектронная спектроскопия

     Фотоэлектронная спектроскопия(ФЭС) – это наиболее широко используемый метод для изучения электронной структуры заполненных состояний на поверхности и в приповерхностной области (глубина 20-40 Ǻ). Физической основой метода служит фотоэлектрический эффект, в котором электрон, первоначально находящийся в состоянии с энергией связи Ев, поглощает фотон с энергией hν и покидает твердое тело с кинетической энергией:

     Еkin=hν – Ев – Фо , где Фо = Еvacuum – ЕFermi;

 

     Для того, чтобы зарегистрировать фотоэлектрон, должны быть выполнены следующие условия:

  • Энергия фотона должна быть достаточна, чтобы электрон смог покинуть твердое тело, то есть hν ≥ Ев + Фо ()
  • Скорость электрона должна быть направлена в сторону внешней поверхности.
  • Электрон не должен потерять энергию в столкновениях с другими электронами на своем пути к поверхности.

      Диапазон  энергий фотонов, используемый в  материаловедении ,простирается от ультрафиолета (УФ) до рентгеновского излучения. Практически энергетический диапазон простирается от 10 эВ, что близко к энергии связи электрона в атоме водорода (13,6 эВ), до энергий около 100 кэВ. При этих энергиях фотоны могут, проникая в твердое тело, взаимодействовать с электронами внутренних оболочек. Фотоны низких энергий используются для исследования спектров излучения в видимой области, связанного с далеко расположенными, более слабо связанными электронами. Эти внешние электроны участвуют в образовании химических связей, поэтому они не связаны с отдельными атомами и, следовательно, непригодны для элементного анализа.

     В зависимости от энергии фотонов (длины волны), используемых для возбуждения электронов, фотоэлектронная спектроскопия обычно подразделяется на два типа:

  • УФЭС (ультрафиолетовая фотоэлектронная спектроскопия), в которой используются фотоны ультрафиолетового спектрального диапазона 10-50 эВ (соответствующие длины волн от 1000 до 250А). В результате УФЭС используется для изучения валентной зоны и зоны проводимости.
  • РФЭС (рентгеновская фотоэлектронная спектроскопия), в которой используется рентгеновское излучение с энергией  квантов в диапазоне 100 эВ-10 кэВ (соответствующие длины волн от 100 до 1А).  Как следствие РФЭС зондирует глубокие остовные уровни.
  • Синхротронное излучение, в котором энегрии энергии фотонов от 40 до 1200 эВ. Позволяет исследовать остовные уровни и валентную зону.

     Это разделение на два типа достаточно условно как с точки зрения объекта исследования (подразделение  энергетических уровней на основные и валентные само по себе условно), так и с точки зрения используемых источников излучения (при использовании синхротронного излучения можно излучать фотоэмиссию от мягкого ультрафиолетового излучения до жесткого рентгеновского). Более того в обоих методах используются одни и те же физические процессы. 

Рентгеноэлектронный спектрометр

 

     Из  уравнения hν = Eсв + Eкин видно, что если известны величины hν и Eкин, то можно определить энергию ионизации Eион или энергию связи Eсв соответствующего уровня. Для определения Eкин используются специально созданные электронные спектрометры. Электронный спектрометр (рис. 3) состоит из трех основных частей, в которых соответственно происходят генерация электронов, анализ их энергии и регистрация. В спектрометре поток ионизирующего излучения направляется на образец. Электроны могут быть выбиты из любой оболочки молекулы, ионизационный потенциал которой меньше энергии облучения. Выбитые электроны попадают в анализатор энергий электронов спектрометра. В анализаторе электроны описывают различные траектории в зависимости от своих энергий и напряжения, приложенного к электродам анализатора.

     Наиболее  распространен и хорошо известен сферический анализатор. В этом анализаторе  к обкладкам сферического конденсатора прикладывается заданное напряжение. Разность потенциалов между двумя пластинами сферического конденсатора непосредственно связана с кинетической энергией электронов, прошедших через анализатор соотношением

     

где Eкин – кинетическая энергия электрона, V – разность потенциалов между двумя сферами радиусов R1 и R2 . Если менять напряжение на обкладках, то можно проанализировать спектр энергии Eкин, которой обладают электроны, падающие на входную щель анализатора.

     Исследуемое вещество облучают монохроматическим рентгеновским излучением. В качестве источника рентгеновских монохроматических квантов может быть использована обычная рентгеновская трубка, анод которой сделан из материала, имеющего достаточно интенсивную и узкую линию рентгеновского излучения. В качестве таких линий выступают обычно – линия Mg (hν = 1253,6 эВ) или -линия Al (hν = 1486,6 эВ).

     В качестве детектора электронов может  быть использован обычный электрометр или пропорциональный счетчик. В серийных промышленных спектрометрах применяются электронные умножители. В этих приборах каждый попавший в них фотоэлектрон выбивает лавину вторичных электронов, которые регистрируются электронной схемой как отдельный импульс. Интенсивность рентгеноэлектронной линии определяется числом импульсов в единицу времени.  

      Физический  принцип.

     В фотоэлектронной спектроскопии  твердых тел анализируется кинетическая энергия электронов, испущенных при  облучении твердых тел моноэнергетическими  фотонами с энергией hν

     hν = Еkin + ЕВ + Фо , где Фо = Еvacuum – ЕFermi;

     где I – энергия связи(ионизации) атомного или молекулярного уровня системы. Энергия фотонов известна, кинетическая энергия фотоэлектрона Еkin регистрируется с помощью спектрометра, а работа выхода спектрометра легко определяется с помощью калибровочных экспериментов.

     Значит  легко можно определить энергию связи (ионизации) соответствующего электронного уровня, которая зависит от характера распределения электронов в исследуемой системе. 

 
 
 
 
 
 

      Отсюда  видно, что спектр фотоэмиссии I(E) это своего рода отпечаток плотности заполненных состояний исследуемого материала. 

Анализ  с помощью ФЭС

Фотоэлектронный спектр натрия

     На  рис. 5 проиллюстрирован процесс рентгеновской  фотоэмиссии натрия. Пики соответствуют энергиям характеристических электронов, покидающих твердое тело без процессов, приводящих к потерям энергии.

Рис. 5. Энергетический спектр электронов образца Na, при синхротронном облучении фотонами с энергией 100 эВ. На энергетической шкале приведена энергия связи, т. е. hv — Етн.

      Пики  соответствуют энергиям характеристических электронов, покидающих твердое тело без процессов, приводящих к потерям энергии. Хвосты со стороны большей энергии связи соответствуют электронам, претерпевшим неупругое рассеяние и потерю энергии на пути из образца и выходящим поэтому с меньшей кинетической энергией, что приводит к кажущемуся возрастанию энергии связи.

     Линии 2s и 2p отчетливо видны в виде острых пиков, это и есть остовные уровни, положение которых определяется энергией связи электронов, что является характеристикой данного элемента. Т.е. присутствие пиков при данной энергии связи является свидетельством присутствия на поверхности данного элемента (содержит информацию о химическом составе поверхности).

     Сравнивая энергии пиков на экспериментальном  спектре с известными энергиями связи в элементах можно выяснить какие элементы присутствуют в данном материале.

     Из  измеренных амплитуд пиков на спектре  РФЕС, можно определить концентрацию элементов, из которых состоит поверхность.

     Хочу  отметить, что в общем случае вероятность фотоэмиссии максимальна при энергии фотонов близкой к порогу ионизации и она быстро уменьшается, если энергия фотонов значительно превосходит энергию связи электронов. Поэтому РФЭС – это метод для исследования в основном глубоких остовных уровней. Для исследования валентной зоны нужна меньшая энергия и использование УФ источника возбуждения.

     Энергии 100эВ недостаточна для вырывания электронов из K-оболочек Na, но достаточна для создания вакансий в L-оболочках.

Химический  сдвиг

      Несмотря на постоянство энергии остовных уровней атома, в различных веществах имеется определенная разница в энергиях связи для данного атома при переходе от одного вещества к другому. Как следует из экспериментальных данных, энергия связи Есв электронов остова несколько меняется при изменении характера химического окружения атома, спектр которого изучается.

      Изменения энергии связи (ΔЕсв) для электронного уровня одного и того же элемента в разных соединениях принято называть химическим сдвигом. Одними из важнейших результатов, полученных группой шведских физиков, являются демонстрация возможности измерения химических сдвигов на примерах рентгеноэлектронных спектров многих органических и неорганических соединений и создание аппаратуры, способной регистрировать соответствующие сдвиги. Сдвиг энергии внутренних электронов в зависимости от химического окружения показан на рис. 2 для линии Si2p. Энергия связи Si2p смещается более чем на 4 эВ при переходе от Si к SiO2 . Сдвиг энергии уровня обычно измеряется относительно свободного элемента. Средняя точность экспериментальных значений Есв ~ ± (0,1-0,2) эВ для твердых тел и около (± 0,04) эВ для газов.

     Для иллюстрации зависимости энергии связи электрона в атоме от химического окружения атома часто используют рентгеноэлектронный 1s-спектр углерода этилового эфира трифторуксусной кислоты (рис. 3). Четыре максимума C1s почти равной интенсивности в весьма изящной форме представляют четыре окружения атомов углерода в этой молекуле.

В табл. 2 приведены значения энергий связи для 2p-уровня серы в газообразных соединениях. Из табл. 2 видно, что изменения энергии связи внутренних электронов могут достигать очень значительных величин в ряду соединений этого элемента.

Структура молекул

     В настоящее время проведены многочисленные исследования, показывающие эффективность применения рентгеноэлектронной спектроскопии для решения различных вопросов структурной химии органических и неорганических соединений. Применение РФЭС в структурной химии можно показать на примере исследования 1s-спектров азота (N1s) в Na2N2O3. До применения РФЭС предполагались три возможные структуры иона оксигипонитрата:

     

     

Рентгеноэлектронный спектр Na2N2O3 ясно указывает наличие структурно неэквивалентных атомов азота, и это исключает симметричную структуру (I). В то же время можно также ожидать, что структуры II и III будут давать две полосы в спектре N1s. Окончательный выбор между структурами (II) и (III) возможен только при анализе величины расщепления N1s полосы, связанной с различием величины электронной плотности на атомах азота.

Информация о работе Фотоэлектронная спектроскопия