Физика воды. Значение воды для жизни на Земле

Автор работы: Пользователь скрыл имя, 23 Декабря 2013 в 14:05, реферат

Описание работы

Вода(оксидводорода) — бинарноенеорганическое соединение, химическая формула Н2O. Молекула воды состоит из двух атомов водорода и одного — кислорода, которые соединены между собой ковалентной связью.
Ученые правы: нет на Земле вещества более важного для нас, чем обыкновенная вода, и в то же время не существует другого такого же вещества, в свойствах которого было бы столько противоречий и аномалий, сколько в её свойствах.

Содержание работы

1. Введение………………………………………………………………………3
2. Физические свойства воды…………………………………………………..3
3. Вода и измерения……………………………………………………………..7
4. Жесткость воды……………………………………………………………….9
5. Тяжелая вода…………………………………………………………………11
6. Лед и его свойства…………………………………………………………...15
7. Вода в природе…………………………………………………………........17
8. Виды воды…………………………………………………………………....19
9. Значение воды для жизни на Земле………………………………………...21
10. Список используемой литературы……………………………………........23

Файлы: 1 файл

реферат КСЕ.docx

— 79.19 Кб (Скачать файл)

Тяжелая вода, как выяснили ученые, подавляет все живое. Вот  какими резко полярными свойствами отличаются дейтериевая вода и обычная - протиевая. Тяжелая вода замедляет биологические процессы и действует угнетающе на живые организмы. Микробы в тяжелой воде гибнут, семена не прорастают, растения и цветы вянут при поливке такой водой. Тяжелая вода гибельно влияет на животных. А на человека? К сожалению, о тяжелой воде нам известно еще далеко не все.

В 1 т речной воды присутствует около 150 г тяжелой. В океанской  воде ее чуть больше: на 1 т приходится 165 г. В озерах тяжелой воды обнаружено на 15-20 г больше, чем в реках, из расчета на 1 т. Любопытно отметить, что дождевая вода содержит больше окиси дейтерия, чем снег. Такие различия кажутся странными, ведь то и другое - осадки атмосферного происхождения. Да, источник один, а содержание тяжелой воды разное. Таким образом, речные, озерные, грунтовые и морские воды весьма несхожи по изотопному составу и, следовательно, как объекты, используемые для получения тяжелой воды, далеко не равнозначны. Было время, когда ее считали "мертвой водой" и полагали, что присутствие тяжелой воды в обычной замедляет обмен веществ, способствует старению организма. Случаи долгожительства на Кавказе некоторые исследователи связывают с меньшим количеством окиси дейтерия в горных потоках ледникового и атмосферного происхождения. Возникновение пустынь, исчезновение оазисов и гибель даже целых цивилизаций древности нередко приписывают накоплению окиси дейтерия в питьевой воде. Однако пока это все только гипотезы, туманные догадки, не подтвержденные экспериментальными результатами.

Предполагается, что молекулы тяжелой воды D2O в естественных условиях практически не встречаются, а преобладают молекулы, имеющие один атом дейтерия - HDO.

Несколько большая масса  молекул HDO, D2O и повышенная прочность дейтериевой связи способствуют тому, что тяжелая вода активнее удерживается в жидкой фазе по сравнению с обычной водой. Следовательно, давление пара тяжелой воды всегда ниже, чем H2O, и это приводит к тому, что молекулы, содержащие дейтерий, концентрируются в жидкой фазе в процессе испарения. На этом построено фракционное разделение изотопов. В естественных условиях эти явления наблюдаются в экваториальных водах, когда в процессе испарения в поверхностных водах увеличивается концентрация изотопа D по сравнению с глубинными горизонтами. Изучение атмосферных осадков показывает, что в первую очередь с дождем выпадают тяжелые изотопы D или 18O. Изотопное разделение происходит в процессе замерзания и таяния. Арктический лед, образующийся из морской воды, содержит на 2 % изотопов D больше, чем вода, из которой он образовался.

Прочность дейтериевой связи  и фракционное разделение изотопов заставляют многих исследователей обратить внимание на изучение обменных процессов  в живом организме. Одни считают, что удаление дейтерия из воды приведет к резкому повышению жизнестойкости организма и даже к продлению  жизни. Другие полагают, что наличие  дейтерия создает в биологическом  мире определенный баланс в процессах  внутриклеточного обмена и его отсутствие вызовет серьезные нарушения  в живой и неживой природе.

Исследования жизнедеятельности  микроорганизмов при постепенном  добавлении тяжелой воды к обычной  показали их удивительную приспособляемость  к новой среде. Когда обычная вода была полностью заменена на дейтериевую, микроорганизмы не погибли, а какое-то время испытывали лишь некоторое угнетение, но после "акклиматизации" продолжали активно развиваться. Такое поведение микроорганизмов наталкивает на мысль, что живая клетка снабжена удивительнейшим механизмом приспособляемости, который спасает ее от гибели даже в условиях накопления дейтерия. Однако отдельные клетки организма из-за каких-то нарушений могут оказаться неустойчивыми, и это приводит их к гибели.

История открытия тяжелой воды.

Американский физико-химик Гарольд Юри (1893-1981), в молодости проявлявший большой интерес к ядерной структуре вещества, решил использовать спектроскопический метод для изучения водорода. Выполненные Г. Юри теоретические расчеты убедили, что попытки разделения водорода на изотопы могут привести к интересным результатам - к выявлению нового стабильного изотопа водорода, существование которого предсказал ещё Э. Резерфорд. Руководствуясь этими соображениями, Г. Юри поручил одному из своих учеников выпарить 6 л жидкого водорода, и в конце эксперимента исследователи получили остаток объемом около 3 см3. Самое удивительное, что в результате спектрального анализа остатка было найдено такое же расположение линий, какое было предсказано Г. Юри на основе теоретических предпосылок. Тяжелый водород - дейтерий был открыт.

Об этом Г. Юри сообщил в 1931 году на новогоднем собрании Американской Ассоциации развития науки в Нью-Орлеане. Дальнейшие усилия ученого были направлены на получение образца с высокой концентрацией дейтерия. Это удалось сделать с помощью электролиза, газовой диффузии, дистилляции воды и других методов. Разные упругости пара H2 и HD позволили Г. Юри, Ф. Брикведде и Г. Мэрфи доказать существование дейтерия. Опубликованная Г. Юри совместно с сотрудниками работа произвела ошеломляющее впечатление на ученых самых различных областей науки. Многие специалисты воспринимали это известие как что-то фантастическое и спорное, но экспериментальные факты показывали, что тяжелый изотоп водорода реально существует.

Дейтерий начал свой сложный  путь, а Г. Юри была вручена Нобелевская премия (1934). После открытия дейтерия события развивались очень быстро. Дело было только за экспериментом, но это оказалось весьма сложной технической задачей. Тяжелая вода была впервые обнаружена в природной воде Г. Юри и Э.Ф. Осборном в 1932 году.

Академик Н.Д. Зелинский, узнав об открытии тяжелой воды, писал в 1934 году: "Кто бы мог  подумать, что в природе существует еще другая вода, о которой мы до прошлого года ничего не знали, вода, которую в весьма небольшом количестве мы ежедневно вводим в свой организм вместе с питьевой водой. Однако небольшие  количества этой новой воды, потребляемые человеком в течение жизни, составляют уже порядок величины, с которым  нельзя не считаться". Развивая свою мысль, продолжал: "В эволюции химических форм в биосфере и литосфере тяжелая вода не может не принимать участия, и вопрос о том, в какой стадии такого эволюционного процесса находится тяжелая вода в нашу эпоху, в стадии накопления ее в природе или в стадии деградации, представляется весьма важным и с точки зрения обмена веществ в живых организмах, в котором вода играет первостепенную роль. Все живое проводит через свой организм громадные массы обыкновенной воды, а вместе с ней и тяжелую воду; какое же влияние оказывает последняя на жизненные функции организма? Пока это неизвестно, но такое влияние должно быть несомненным".

Лед и его свойства.  

С точки зрения обычного человека, лед более или менее  одинаков независимо от того, где он образовывается: в атмосфере в  виде градинок, на краях крыш в виде сосулек или в водоемах в виде пластин. С точки зрения физики имеется  множество разновидностей льда, отличающихся своей молекулярной и мезоскопической структурой. Во льду, существующем при нормальном давлении, каждая молекула H2O окружена четырьмя другими, то есть координационное число структуры равно четырем (так называемый лед Ih). Соответствующая кристаллическая решетка – гексагональная – не является плотноупакованной, поэтому плотность обычного льда (∼0,9 г/см3) ниже плотности воды (∼1 г/см3), для структуры которой, как показывают рентгеноструктурные исследования, среднее координационное число составляет ∼4,4 (против 4 у льда Ih). Фиксированные положения в структуре льда занимают только атомы кислорода. Два атома водорода могут занимать различные положения на четырех связях молекулы H2O с другими соседями. Ввиду гексагональности решетки кристаллики, растущие в свободном состоянии (например, снежинки), имеют шестигранную форму.

Однако гексагональная фаза далеко не единственная форма существования  льда. Точное число других кристаллических  фаз – полиморфных форм льда –  до сих пор неизвестно. Они образуются при высоких давлениях и низких температурах. Одни исследователи считают точно установленным наличие 12 таких фаз, в то время как другие насчитывают их до 14. Конечно, это не единственное вещество, обладающее полиморфизмом, но количество различных фаз льда, которые продолжают открывать и по сегодняшний день, поражает. Все сказанное выше относилось к упорядоченному расположению ионов кислорода в кристаллической решетке льда. Что касается протонов – ионов водорода, – то, как показано методом дифракции нейтронов, в их расположении существует сильный беспорядок. Таким образом, кристаллический лед является и хорошо упорядоченной средой (по кислороду) и одновременно разупорядоченной (по водороду).

Зачастую кажется, что лед податлив и текуч. Так оно и есть, если температура близка к точке плавления (то есть t = 0°С при атмосферном давлении), а нагрузка действует длительное время. Да и самый жесткий материал (например, металл) при температурах, близких к точке плавления, ведет себя аналогичным образом. Пластическая деформация льда, как, впрочем, и многих других кристаллических тел, происходит в результате зарождения и движения по кристаллу разнообразных несовершенств структуры: вакансий, межузельных атомов, межзеренных границ и, что существеннее всего, дислокаций. Как было установлено еще в 30-е годы нашего столетия, именно наличие последних предопределяет резкое снижение сопротивления кристаллических твердых тел пластической деформации (в 102–104 раз по отношению к сопротивлению идеальной решетки). К настоящему времени во льду Ih обнаружены все виды дислокаций, свойственных гексагональной структуре, исследованы их микромеханические и электрические характеристики.

Не менее замечательны и электрические свойства льда. Величина проводимости и ее экспоненциально быстрое возрастание с повышением температуры резко отличают лед от металлических проводников и ставят его в один ряд с полупроводниками. Обычно лед бывает очень чист химически, даже если растет из грязной воды или раствора (вспомните чистые прозрачные льдинки в грязной луже). Это обусловлено низкой растворимостью примесей в структуре льда. В результате при замерзании примеси оттесняются на фронте кристаллизации в жидкость и не входят в структуру льда. Именно поэтому свежевыпавший снег всегда белый, а вода из него отличается исключительной чистотой.

Природа мудро предусмотрела  гигантскую очистительную станцию  для воды в масштабе всей атмосферы  Земли. Поэтому рассчитывать на большую  примесную проводимость (как, например, в легированном кремнии) во льду не приходится. Но в нем нет и свободных  электронов, как в металлах. Лишь в 50-е годы XX века было установлено, что носителями заряда во льду являются неупорядоченные протоны, то есть лед  является протонным полупроводником.

Упоминавшиеся выше перескоки протонов создают в структуре льда дефекты двух типов: ионные и ориентационные. В первом случае перескок протона происходит вдоль водородной связи от одной молекулы H2O к другой, в результате чего образуется пара ионных дефектов H3O+ и ОН, а во втором – на соседнюю водородную связь в одной молекуле Н2О, в результате чего возникает пара ориентационных дефектов Бьеррума, получивших название Lи D-дефектов (от нем. leer – пустой и doppelt – двойной). Формально такой перескок можно рассматривать как поворот молекулы Н2О на 120°.

Протекание постоянного  тока за счет перемещения только ионных или только ориентационных дефектов невозможно. Если, например, по какому-либо участку сетки прошел ион Н3О+, то следующий такой же ион по этому же пути пройти не сможет. Однако если пропустить по этому пути D-дефект, то расположение протонов вернется к исходному и, следовательно, сможет пройти и следующий ион Н3О+. Аналогично ведут себя дефекты ОН и L. Поэтому электропроводность химически чистого льда ограничивается теми дефектами, которых меньше, а именно ионными. Диэлектрическая поляризация, напротив, обусловлена более многочисленными ориентационными дефектами Бьеррума. В действительности при приложении внешнего электрического поля оба процесса идут параллельно, что позволяет льду проводить постоянный ток и в то же время испытывать сильную диэлектрическую поляризацию, то есть проявлять одновременно и свойства полупроводника и свойства изолятора. В последние годы не прекращаются попытки обнаружить при низких температурах у чистого льда сегнетоэлектрические и пьезоэлектрические свойства как в объеме, так и на межфазных границах. Полной уверенности в их существовании пока нет, хотя обнаружено несколько псевдопьезоэффектов, связанных с наличием дислокаций и других структурных дефектов.

Вода в природе.

Три четверти поверхности  земного шара покрыты водой. Водную оболочку земли называют гидросферой. Большую ее часть составляет соленая  вода морей и океанов, а меньше - пресная вода озер, рек, ледников, грунтовые  воды и водяной пар. В атмосфере  нашей планеты вода находится  в виде капель малого размера, в облаках  и тумане, а также в виде пара. При конденсации выводится из атмосферы в виде атмосферных  осадков (дождь, снег, град, роса).

Вода является важнейшим  веществом всех живых организмов на Земле. Без воды невозможно существование  живых организмов. В любом организме  вода является средой, в которой  происходят химические реакции, без  которых не могут жить живые организмы. Фундаментальна роль воды в жизни  клетки.

Вода является самым ценным и самым необходимым веществом  для жизнедеятельности живых  организмов. Предположительно, зарождение жизни на Земле произошло в  водной среде.

Круговорот воды на Земле

Круговорот воды, или влагооборот, на Земле – один из важнейших процессов в географической оболочке. Под ним понимают непрерывный замкнутый процесс перемещения воды, охватывающий гидросферу, атмосферу, литосферу и биосферу. Наиболее быстрый круговорот воды происходит на поверхности Земли. Он совершается под действием солнечной энергии и силы тяжести. Влагооборот складывается из процессов испарения, переноса водяного пара воздушными потоками, конденсации и сублимации его в атмосфере, выпадения осадков над Океаном или сушей и последующего стока их в Океан. Основной источник поступления влаги в атмосферу – Мировой океан, меньшее значение имеет суша. Особую роль в круговороте занимают биологические процессы – транспирация и фотосинтез. В живых организмах содержится более 1000 км3 воды. Хотя объем биологических вод небольшой, они играют важную роль в развитии жизни на Земле и усилении влагооборота: почти 12% испаряющейся влаги в атмосферу поступает с поверхности суши за счет транспирации ее растениями. В процессе фотосинтеза, осуществляемого растениями, ежегодно разлагается 120 км3 воды на водород и кислород.

Информация о работе Физика воды. Значение воды для жизни на Земле