Автор работы: Пользователь скрыл имя, 30 Ноября 2015 в 14:21, реферат
Бор Нильс Хенрик Давид (7 октября 1885, Копенгаген — 18 ноября 1962) — датский физик. В 1911 — 1912 работал в Кембридже у Д. Д. Томсона, в 1911—1913 — в Манчестере у Э. Резерфорда. С 1920 — директор созданного им Института теоретической физики в Копенгагене. Бор принял «планетарную» модель атома, предложенную Резерфордом, и представил в 1913 теоретическую картину строения химического атома.
Введение…………………………………………….
Биография Н. Бора………………………………..
Семья. Детство и юность
Молодость. Теорема Бора — ван Лёвен
Бор в Англии. Теория Бора (1911—1916)
Дальнейшее развитие теории. Принцип соответствия (1916—1923)
Становление квантовой механики. Принцип дополнительности (1924—1930)
Ядерная физика (1930-е годы)
Противостояние нацизму. Война. Борьба против атомной угрозы (1940—1950)
Последние годы
Научная школа Бора
Развитие теории Нильса Бора
3.1 Боровская модель атома.
4. Заключение
5. Библиографический список
«Каким секретом вы обладали, который позволил вам в такой степени концентрировать вокруг себя творческую теоретическую молодёжь?», тот ответил:
«Никакого особого секрета не было, разве только то, что мы не боялись показаться глупыми перед молодёжью.»
Развитие теории Нильса Бора
Первые результаты содержатся в черновике, посланном Резерфорду ещё в июле 1912 года и носящем название «резерфордовского меморандума». Однако решающие успехи были достигнуты в конце 1912 — начале 1913 года. Ключевым моментом стало знакомство в феврале 1913 года с закономерностями расположения спектральных линий и общим комбинационным принципом для частот излучения атомов. Впоследствии сам Бор говорил:
«Как только я увидел формулу Бальмера, весь вопрос стал мне немедленно ясен.»
В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул», опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента: общие утверждения (постулаты) о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома, представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики, на которое накладываются дополнительные квантовые условия (например, квантование углового момента электрона)
Он оставался в Манчестере с осени 1914 года до лета 1916 года. В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 года он писал:
«Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем.»
В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана, однако ему не удалось получить расщепление более чем на две компоненты. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий, учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода.
В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия, связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 году, когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора (в частности, для гармонического осциллятора); дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений. Впоследствии Бор дал чёткую формулировку принципу соответствия:
…"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.
В 1921—1923 годах в ряде работ Бору впервые удалось дать на основе своей модели атома, спектроскопических данных и общих соображений о свойствах элементов объяснение периодической системы Менделеева, представив схему заполнения электронных орбит (оболочек, согласно современной терминологии). Правильность интерпретации периодической таблицы была подтверждена открытием в 1922 году нового элемента гафния Дирком Костером и Георгом Хевеши, работавшими в то время в Копенгагене. Как и предсказывал Бор, этот элемент оказался близок по своим свойствам к цирконию, а не к редкоземельным элементам, как думали ранее.
В 1922 году Бору была присуждена Нобелевская премия по физике «за заслуги в изучении строения атома». В своей лекции «О строении атомов», прочитанной в Стокгольме 11 декабря 1922 года, Бор подвёл итоги десятилетней работы.
Однако было очевидно, что теория Бора в своей основе содержала внутреннее противоречие, поскольку она механически объединяла классические понятия и законы с квантовыми условиями. Кроме того, она была неполной, недостаточно универсальной, так как не могла быть использована для количественного объяснения всего многообразия явлений атомного мира. Например, Бору совместно с его ассистентом Хендриком Крамерсом так и не удалось решить задачу о движении электронов в атоме гелия (простейшей двухэлектронной системе), которой они занимались с 1916 года. Бор отчётливо понимал ограниченность существующих подходов (так называемой «старой квантовой теории») и необходимость построения теории, основанной на совершенно новых принципах:
«…весь подход к проблеме в целом носил ещё в высшей степени полуэмпирический характер, и вскоре стало совершенно ясно, что для исчерпывающего описания физических и химических свойств элементов необходим новый радикальный отход от классической механики, чтобы соединить квантовые постулаты в логически непротиворечивую схему.»
Боровская модель атома.
Боровская модель атома (Модель Бора) — полуклассическая модель атома, предложенная Нильсом Бором в 1913 г
За основу он взял планетарную модель атома, выдвинутую Резерфордом.
Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию. Постепенно электрон должен приближаться по спирали к ядру и, в конце концов, упасть на него, что привело бы к разрушению атома. Атомы весьма стабильны, и, значит, здесь образуется брешь в классической теории. Чтобы преодолеть эту проблему, Бор ввёл допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определённым (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка:
Используя это допущение
и законы классической
Здесь
— масса электрона,
— количество протонов в ядре,
— электрическая
постоянная,
— заряд электрона. Именно такое выражение
для энергии можно получить, применяя уравнение
Шрёдингера в задаче о движении электрона
в центральном кулоновском поле. Радиус
первой орбиты в атоме водорода R0=5,
Далее исходя из соображений классической физики о круговом движении электрона вокруг неподвижного ядра по стационарной орбите под действием кулоновской силы притяжения, Бором были получены выражения для радиусов стационарных орбит и энергии электрона на этих орбитах:
(6), где м — боровский радиус.
(7) — энергетическая постоянная Ридберга (численно равна 13,6 эВ).
Заключение
Бор Нильс - один из творцов квантовой теории, лауреат Нобелевской премии. Научные интересы Бора находились на стыке физики и философии, в сфере анализа понятийного аппарата физических теорий. В период создания новой атомной модели (1913) сформулировал принцип соответствия. Для преодоления методологических трудностей в развитии квантовой механики, ее интерпретации Бор выдвинул и развил принцип дополнительности — способ описания, который стал применяться в различных сферах познания при анализе альтернативных, противоречивых ситуаций. В последние годы жизни, преодолевая влияние позитивизма, Бор подходил к материалистической и диалектической трактовке ряда проблем квантовой механики и теории познания. Процесс сближения науки и политики приводил Бора к пониманию того, что ученый-атомник должен быть как физиком, так и политиком, осознавать ответственность, связанную с прогрессом знаний и судьбами человечества. Бор активно выступал за мир и международное сотрудничество, за мирное использование атомной энергии
Библиографический список