Аксиоматическое построение основных уравнений теории реального электромагнитного поля

Автор работы: Пользователь скрыл имя, 26 Ноября 2009 в 08:54, Не определен

Описание работы

Статья

Файлы: 1 файл

ref-29933.doc

— 498.00 Кб (Скачать файл)

АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ОСНОВНЫХ УРАВНЕНИЙ

ТЕОРИИ  РЕАЛЬНОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ 

В.В. Сидоренков

МГТУ  им. Н.Э. Баумана                                                                                                                                                                                                                                                                                                                                                                                                

                                                                                                                                                                                 

В концепции корпускулярно-полевого дуализма электромагнитных характеристик материи сформулированы физико-математические принципы аксиоматического построения уравнений реального электромагнитного поля, физическое содержание которых представляет собой концептуально новый уровень в развитии основ полевой теории классического электромагнетизма. 

     Известно [1], что в электромагнетизме базовой физической характеристикой материального тела является его электрический заряд, представление о котором на микроуровне имеет принципиальное дополнение: элементарная частица характеризуется не только зарядом q, кратным заряду электрона |e-|, но и спином s, трактуемым как собственный момент количества движения частицы, величина которого квантована значением h/2, где h - постоянная Планка. Таким образом, локальными (корпускулярными) электромагнитными характеристиками микрочастицы являются электрический заряд, определяющий ее электрические свойства и собственный момент, ответственный за ее магнитные свойства, поскольку истинный магнетизм имеет спиновую природу.

     С другой стороны, обратим внимание на основополагающую аксиому философии: «пространство и время есть формы существования материи», означающую невозможность в принципе существования материи вне пространства и времени, соответственно, реализации пространства и времени без материи. Иными словами, характеристики материи и пространства-времени едины и взаимно обусловлены. По нашему мнению, аксиома концептуально обосновывает реальность корпускулярно-полевого дуализма материи, который, казалось бы, отличен только лишь по названию от  «корпускулярно-волнового дуализма» частиц микромира в квантовой механике. Формально и здесь и там имеем неразрывную взаимосвязь материи с ее пространственно-временным собственным полем. Однако сущностные различия принципиальны: представления корпускулярно-полевого дуализма основаны на объективном единстве частицы материи и ее поля в реальном пространстве физического вакуума, а в концепции корпускулярно-волнового дуализма материальная частица представляется волной вероятности в абсолютно пустом, абстрактном пространстве. 

     На  базе этой логики приходим к выводу, что и электромагнитные характеристики микрообъектов должны обладать «корпускулярно-полевым дуализмом», благодаря которому указанным выше локальным параметрам частицы соответствует некий полевой аналог в виде ее собственного первичного поля. Такой вывод вовсе не так тривиален, как может показаться на первый взгляд, ведь он относится не к известному электромагнитному полю силового взаимодействия зарядов друг с другом на расстоянии, а к иному, далеко не очевидному, первичному полю микрочастицы. Более конкретно пока можно лишь сказать, что если такое поле действительно реально, то оно обязательно должно быть функционально связано с обычным векторным электромагнитным полем. По этой причине полагаем первичное поле также векторным, где электрическая вектор-компонента порождена зарядом микрочастицы q, а магнитная компонента - удельным (на единицу заряда) моментом n( ), кратным (n - натуральное число) кванту магнитного потока [1]. А поскольку электрический заряд и спин выявляются опосредовано измерением характеристик электромагнитного поля, то физически логично считать, что и компоненты первичного поля предполагаемых корпускулярно-полевых пар будут также определяться посредством того же электромагнитного поля.     

     Как видим, наша основная задача - разобраться далее, что должно представлять собой такое поле, каким образом можно аналитически описать его физические свойства и в итоге аксиоматически построить уравнения функциональной взаимосвязи компонент этого гипотетического поля и с реально наблюдаемыми в настоящее время компонентами электромагнитного поля в виде электрической и магнитной напряженностей.

     Можно попытаться уже сейчас поставить вопрос, каким должно быть обсуждаемое первичное поле. Например, известен физически интересный факт, что в волновое уравнение квантовой механики (уравнение Шрёдингера) входит поле векторного магнитного потенциала, которое в принципе не может быть заменено полем вектора магнитной индукции. Вполне возможно, что именно электрическая и магнитная компоненты поля векторного потенциала и есть первичные полевые характеристики микрочастицы, полевой эквивалент ее локальных параметров. Однако сегодня о физических свойствах электромагнитного векторного потенциала известно сравнительно мало, да и вообще пока не ясно, соответствует ли данное предположение действительности. Все это и многое другое мы должны выяснить в процессе проводимых исследований.

     Итак, продолжим наши рассуждения. Поскольку компоненты обсуждаемого гипотетического первичного поля есть векторные функции пространственно-временных переменных, то описывающие их поведение дифференциальные уравнения наиболее просто можно получить действием на и пространственной производной первого порядка (оператор «набла») со свойствами вектора и скалярной частной временной производной . При этом естественно возникает принципиальный вопрос о допустимости именно таких математических действий с точки зрения физического содержания получаемых результатов, их адекватности рассматриваемой проблеме.

     В сложившейся ситуации воспользуемся  чрезвычайно важным замечанием классика электродинамики Дж.К. Максвелла, который настоятельно призывал [2] ответственно относиться к математическим операциям над векторами электромагнитного поля и их физической трактовке. Вот его слова ([2] п. 12): “В науке об электричестве электродвижущая и магнитная напряженности принадлежат к величинам первого класса – они определены относительно линии. ... Напротив, электрическая и магнитная индукция, а также электрические токи принадлежат к величинам второго класса – они определены относительно площади”. Как видим, тут конкретно говорится о принципиальных различиях электромагнитных векторов: напряженностей и линейных (циркуляционных) векторов, соответственно, электрической и магнитной индукций, плотности электрического тока потоковых векторов. Здесь материальные параметры среды: - электрическая и - магнитная абсолютные проницаемости, - удельная электропроводность.

     В развитие сказанного далее Максвелл обсуждает корректные математические действия над функциями полей указанных векторов с точки зрения физики ([2] п. 14): “В случае напряженности следует брать интеграл вдоль линии от произведения элемента длины этой линии на составляющую напряженности вдоль этого элемента. В случае потоков следует брать интеграл по поверхности от потока через каждый ее элементов”. Тогда в рамках таких условий при переходе к дифференциальной форме записи этих математических действий операция «ротора» (см. теорему Стокса) допустима только для полевых функций линейных векторов: и , а взятие «дивергенции» (см. теорему Гаусса-Остроградского) возможно лишь от функций поля потоковых векторов: , и .

     К сожалению, призывы Максвелла к учету физико-математических различий функций векторов электромагнитного поля обычно игнорируют, когда даже в учебной литературе формально пишут физически бессмысленные выражения и , создавая путаницу понятий в умах читателей, превращая в абсурд процесс познания, а обучение - в бестолковое занятие. Как показывает практика научной работы и преподавание все это следствие завидной живучести в умах самих «просветителей» (часто на подсознательном уровне) инородной электродинамике гауссовой системы единиц с ее безразмерными коэффициентами и , где векторы и , и – тождественны. В итоге выхолащивается физическое содержание в соотношениях электромагнетизма и выпячивается на передний план формализм математики. Возможно, этот математический нигилизм и есть одна из причин концептуального застоя в классической электродинамике, которая после Максвелла как наука уже не развивалась, несмотря на серьезную методическую модернизацию исходных максвелловских уравнений и грандиозные успехи внедрения достижений электромагнетизма во многих областях жизни человеческого общества.

     Странно, но сложившееся положение дел считается нормальным. Более того, повсеместно с помпой утверждается, что «данная область знания наиболее полно разработана во всех ее аспектах, и настоящий ее уровень является вершиной человеческого гения». Однако надо думать, что эти громкие заявления, конечно, не относятся собственно к самой электромагнитной теории, а касаются только математического уровня ее описания. Ведь математика - всего лишь язык физики. Правда, полезная глобальная математизация современных методов научных исследований порождает иллюзию, что именно уровень развития математики определяет сегодня прогресс наших знаний о Природе. Надо обладать немалым мужеством и веской аргументацией, чтобы в стремлении конструктивно изменить такую, казалось бы, тупиковую ситуацию во всеуслышание утверждать: физические представления классического электромагнетизма – это концептуально недостаточно исследованная область естествознания.

     Итак, рассмотрим действие оператора «набла» и частной временной производной на векторные функции обсуждаемого здесь гипотетического первичного поля. Так как для потоковых векторов, следуя здравой логике Максвелла, операция «ротора» недопустима, то функции и считаем полями линейных векторов. В этом случае мы получим два (из трех возможных) варианта записи действия указанных операторов на представленные функции: и , и . А преобразование линейных векторов и в потоковые и , аналогичные известным потоковым векторам и , описывающим отклик пространства среды на воздействие этих полей, позволяет записать другой, скалярный результат действия оператора «набла»: и .

     Эти выражения используем далее для физико-математического построения соотношений функциональной связи компонент гипотетического первичного поля и с компонентами электромагнитного поля в виде электрической и магнитной напряженностей. Поскольку взятие ротора функции поля линейного вектора дает функцию потокового вектора, то, дабы удовлетворить априорным требованиям взаимосвязи указанных полей, физически логично считать, что циркуляция векторов и первичного поля обусловлена явлением электрической и магнитной поляризации среды:

     (a)  ,              (b)  .                                   (1)         

Здесь учтено, что компонента первичного поля микрочастицы есть полевой эквивалент ее электрического заряда, создающего электрическое поле, а компонента порождается спином частицы, ответственным за магнитное поле.

     В соотношениях (1) ротор функций не равен нулю, что говорит о том, что компоненты первичного поля и являются вихревыми. По этой причине дивергентные уравнения для указанных полевых компонент запишем в виде соотношений кулоновской калибровки, определяющих математически чисто вихревой характер таких полей:

     (a)  ,             (b)  .                                     (2)         

     Поскольку действие скалярного оператора частной временной производной на векторную функцию не меняет ее геометрические свойства, то получаемые при этом новые векторы и останутся линейными (циркуляционными) векторами. А потому функциональная связь полей или возможна только с компонентами электромагнитного поля линейных векторов и напряженностей, причем для однозначного выбора пар этих компонент надо учесть, что равенство векторов возможно только при их коллинеарности. В качестве существенного уточнения заметим, что, согласно соотношениям (1), векторы в парах и , соответственно, и взаимно ортогональны. Таким образом, с необходимостью приходим к соотношениям и , которые, однако, нельзя считать окончательными. Ведь в наших рассуждениях никак не отражена принципиально важная характеристика материальной среды – ее электрическая проводимость , которой в той или иной мере обладают все реальные среды. А это должно определенно повлиять на окончательный вид данных выражений.

     Как известно [1], процесс электропроводности в хорошем приближении описывается законом Ома , где электрическое поле в проводнике с током потенциально: , то есть не может быть вихревым. Следовательно, полученное ранее соотношение является окончательным. Однако вихревое магнитное поле электрического тока существует. Это следует из закона сохранения заряда , когда подстановки в него выражений закона Ома , теоремы Гаусса и соотношения (1а) дают , где - объемная плотность стороннего заряда, а - постоянная времени релаксации заряда в среде за счет ее электропроводности. В итоге искомые соотношения для вихревых и полей запишутся окончательно в виде

Информация о работе Аксиоматическое построение основных уравнений теории реального электромагнитного поля