Автор работы: Пользователь скрыл имя, 26 Марта 2010 в 18:33, Не определен
Курсовая работа
Чем меньше размер заказа у, тем чаще нужно размещать новые заказы. С другой стороны, с увеличением размера заказа уровень запаса повышается, но заказы размещаются реже (рисунок 4). Так как затраты зависят от частоты размещения заказов и объема хранимого запаса, то величина у выбирается из условия обеспечения сбалансированности между двумя видами затрат. Это лежит в основе построения соответствующей модели управления запасами.
Рисунок
4.
Пусть К – затраты на оформление заказа, имеющие место всякий раз при его размещении и предположении, что затраты на хранение единицы заказа в единицу времени равны h следовательно, суммарные затраты в единицу времени TCU(y) как функцию от у можно представить в виде:
TCU(y) = Затраты на оформление заказа в единицу времени
+ Затраты на хранение запасов в единицу времени =
= .
Как видно из рисунка 3, продолжительность цикла движения заказа составляет t0=y/b и средний уровень запаса равен y/2.
Оптимальное значение у получается в результате минимизации TCU(y) по у. Таким образов, в предположении, что у – непрерывная переменная, имеем: ,
откуда оптимальное значение размера заказа определяется выражением: .
(Можно доказать, что y*доставляет минимум TCU(y), показав, что вторая производная в точке у* строго положительна). Полученное выше выражение для размера заказа обычно называют формулой экономичного размера заказа Уилсона.
Оптимальная стратегия модели предусматривает заказ у* единиц продукции через каждые t0*=y*/b единиц времени. Оптимальные затраты TCU(y*), полученные путем непосредственной подстановки составляют .
Для большинства реальных
Принятые в рассмотренной выше
модели допущения могут не
соответствовать некоторым
Рисунок 6
В моделях предыдущего полраздела не учитывается удельные затраты на приобретение товара, т.к. они постоянны и не влияют на уровень запаса. Однако не редко цена единицы продукции зависит от размера закупаемой партии. В таких случаях цены меняются скачкообразно или предоставляются оптовые скидки. При этом в модели управления запасами необходимо учитывать затраты на приобретение.
Рассмотрим модель управления
запасами с мгновенным
Суммарные затраты на единицу времени при y<q равны
.
При y>=q эти затраты составляют
.
Графики этих двух функций приведены на рисунке 7. Пренебрегая влиянием снижения цен, обозначим через ym размер заказа, при котором достигается минимум величин TCU1 и TCU2. Тогда . Из вида функции затрат TCU1 и TCU2, приведенных рисунке 7 следует, что оптимальный размер заказа y* зависит от того, где по отношению к трем показанным на рисунке зонам I, II и III находится точка разрыва цены q. Эти зоны находятся в результате определения q1(>ym) из уравнения TCU1(ym)=TCU2(q1).
Рисунок
7
Так как значение ym известно (= ), то решение уравнения дает значение величины q1. Тогда зоны определяются следующим образом:
Зона I: 0<=q<ym,
Зона II: ym<=q<q1,
Зона III: q>=q1.
На рисунке 8 приведено графическое
решение уравнения для
Алгоритм определения y* можно представить в следующем виде:
а. Если ym<=q<=q1 (зона II), то y*=q.
б. Если q>=q1 (зона III), то y*=ym.
Рисунок 8
Эта модель предназначена для систем управления запасами, включающие n(>1) видов продукции, которая хранится на одном складе ограниченной площади. Данное условие определяет взаимосвязь между различными видами продукции может быть включено в модель как ограничение.
Пусть А – максимально допустимая площадь складского помещения для n видов продукции; предположим, что площадь, необходимая для хранения единицы продукции i-го вида, то ограничение на потребность в складском помещении принимают вид .
Допустим, что запас продукции
каждого вида пополняется
Общее решение этой задачи находится методом множителей Лагранжа. Однако, прежде чем применять этот метод, необходимо установить, действуют ли указанное ограничение, проверив выполнимость ограничений на площадь склада для решения неограниченной задачи. Если ограничение выполняется, то оно избыточно, и им можно пренебречь.
Ограничение действует, если
Оптимальные значения yi и l можно найти, приравняв нулю соответствующие частные производные, что дает
,
.
Из второго уравнения следует, что значение должно удовлетворять ограничению на площадь склада в виде равенства. Из первого уравнения следует, что .