Автор работы: Пользователь скрыл имя, 10 Марта 2011 в 04:46, курсовая работа
Целью настоящей работы является исследование методики управления денежными средствами предприятия с использованием анализа денежных потоков, а также выработка путей по оптимизации денежных средств предприятия и совершенствованию путей по их управлению.
ВВЕДЕНИЕ……………………………………………………………………………………………………………2
Глава 1: СОДЕРЖАНИЕ И МЕТОДИКА УПРАВЛЕНИЯ ДЕНЕЖНЫМИ СРЕДСТВАМИ ПРЕДПРИЯТИЯ……………3
Глава 2: АНАЛИЗ ДВИЖЕНИЯ ДЕНЕЖНЫХ СРЕДСТВ………………………………………………………….7
Глава 3: СОВЕРШЕНСТВОВАНИЕ УПРАВЛЕНИЯ ДЕНЕЖНЫМИ СРЕДСТВАМИ ПРЕДПРИЯТИЙ…….15
ЗАКЛЮЧЕНИЕ……………………………………………………………………………………………………….20
СПИСОК ЛИТЕРАТУРЫ…………………………………………………………………………………………….21
Таким образом, приведенный денежный поток для исходного потока постнумерандо имеет вид:
Приведенная стоимость денежного потока постнумерандо в общем случае может быть рассчитана по формуле:
Если использовать дисконтирующий множитель, то эту формулу можно переписать в следующем виде:
Пример
Рассчитать приведенную стоимость денежного потока постнумерандо (тыс. руб.): 12, 15, 9, 25, если коэффициент дисконтирования r = 12%.
Год | Денежный поток | R | Привед-й поток |
1 | 12 | 0,8929 | 10,71 |
2 | 15 | 0,7972 | 11,96 |
3 | 9 | 0,7118 | 6,41 |
4 | 25 | 0,6355 | 15,89 |
61 | 44,97 |
ОЦЕНКА ПОТОКА ПРЕНУМЕРАНДО
Логика оценки денежного потока в этом случае аналогии вышеописанной; некоторое расхождение в вычислительных формулах объясняется сдвигом элементов потока к началу соответствующих подынтервалов. Для прямой задачи приведенная стоимость потока пренумерандо в общем виде может быть рассчитана по формуле:
Приведенный денежный поток пренумерандо имеет вид:
Приведенная стоимость потока пренумерандо в общем виде может быть рассчитана по формуле:
Так, если в предыдущей задаче предположить, что исходный поток представляет собой поток пренумерандо, его приведенная стоимость будет равна: Pvpre = PVpst*(1+r)=44,97*1,12=50,37 тыс. руб.
ОЦЕНКА АННУИТЕТОВ
Одним из ключевых понятий в финансовых и коммерческой расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.
ОЦЕНКА СРОЧНЫХ АННУИТЕТОВ
Аннуитет представляет собой частный случай денежного потока, а именно, это поток, в котором денежные поступления в каждом периоде одинаковы по величине. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случаи:
С1 = С2 = …… = Сn = A
Примером срочного аннуитета постнумерандо могут служить регулярно поступающие рентные платежи за пользование сданным в аренду земельным участком в случае, если договором предусматривается регулярная оплата аренды по истечении очередного периода. В качестве срочного аннуитета пренумерандо выступает, например, схема периодических денежных вкладов на банковский счет в начале каждого месяца с целью накопления достаточной суммы для крупной покупки.
Для оценки будущей и приведенной стоимости аннуитета можно пользоваться рассмотренными вычислительными формулами, вместе с тем благодаря специфике аннуитетов в отношении равенства денежных поступлений эти формулы могут быть существенно упрощены.
Прямая задача оценки срочного аннуитета при заданных величинах регулярного поступления (А) и процентной ставке (r) предполагает оценку будущей стоимости аннуитета. Как следует из логики, присущей схеме аннуитета, наращенный денежный поток имеет вид:
а расчетная формула трансформируется следующим образом:
Входящий в формулу мультиплицирующий множитель FMЗ(r,n) представляет собой сумму членов геометрической прогрессии:
где (q = 1 -r). Сделав преобразования можно найти, что:
Экономический смысл мультиплицирующего множителя FМ заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FM часто используется в финансовых вычислениях, и поскольку легко заметить, что значения в общем виде зависят лишь от r и n, их можно табулировать.
Пример
Вам предлагают сдать в аренду участок на три года и выбрать один из двух вариантов оплаты аренды: а) 10 млн.руб. в конце каждого года; б) 35 млн.руб. в конце трехлетнего периода. Какой вариант более предпочтителен, если банк предлагает 20% годовых по вкладам?
Первый вариант оплаты как раз и представляет собой аннуитет постнумерандо при n = 3 и А = 10 млн. руб. В этом случаи имеется возможность ежегодного получения арендного платежа и инвестирования полученных сумм как минимум на условною 20% годовых (например, вложение в банк). К концу трехлетнего периода накопленная сумма может быть рассчитана:
FV = А*FМЗ(20%, 3) = 10*3,640 = 36,4 млн. руб.
Таким образом, расчет показывает, что вариант (а) более выгоден.
Общая постановка обратной задачи оценки срочного аннуитета постнумерандо также достаточно наглядна. В этом случае производится оценка будущих денежных поступлений с позиции текущего момента, под которым в данном случае понимается момент времени, с которого начинают отсчитываться равные временные интервалы, входящие в аннуитет.
Экономический смысл расчетов по предыдущей задаче состоит в следующем: с позиции текущего момента реальная стоимость данного аннуитета может быть оценена в 21,064 млн. руб.
Общая формула для оценки текущей стоимости срочного аннуитета постнумерандо выводится из базовой формулы и имеет вид:
тогда,
Экономический
смысл дисконтирующего множителя FM4(r,n)
заключается в следующем: он показывает,
чему равна с позиции текущего момента
величина аннуитета с регулярными денежными
поступлениями в размере одной денежной
единицы (например, один рубль), продолжающегося
n равных периодов с заданной процентной
ставкой r.
Пример
Предложено инвестировать 100 млн.руб. на срок 5 лет при условии возврата этой суммы частями (ежегодно по 20 млн. руб.). По истечении 5 лет выплачивается дополнительное вознаграждение в размере 30 млн. руб. Принимать ли это предложение, если можно «безопасно» депонировать деньги в банк из расчета 12% годовых?
Для принятия решения необходимо рассчитать и сравнить две суммы. При депонировании денег в банк к концу пятилетнего периода на счете будет сумма:
В отношении альтернативного варианта, предусматривающего возмещение вложенной суммы частями, предполагается, что ежегодные поступления в размере 20 млн. руб. можно немедленно пускать в оборот, получая дополнительные доходы. Если нет других альтернатив по эффективному использованию этих сумм, их можно депонировать в банк. Денежный поток в этом случае можно представить двояко:
а) как срочный аннуитет постнумерандо с А = 20, n = 5, r = 20% и единовременное получение суммы в 30 млн. руб.;
б) как срочный аннуитет пренумерандо с А = 20, n = 4, r = 20% и единовременное получение сумм в 20 и 30 млн. руб. В первом случае имеем:
Во втором случае на основании формулы имеем:
Естественно, что оба варианта привели к одинаковому ответу. Таким образом, общая сумма капитала к концу пятилетнего периода будет складываться из доходов от депонирования денег в банке (107,06 млн. руб.), возврата доли от участия в венчурном проекте за последний год (20 млн. руб.) и единовременного вознаграждения (30 млн. руб.). Общая сумма составит, следовательно, 157,06 млн. руб. Предложение экономически нецелесообразно.
МЕТОД ДЕПОЗИТНОЙ КНИЖКИ
Можно дать иную интерпретацию расчета текущей стоимости аннуитета с помощью метода «депозитной книжки», логика которого такова. Сумма, положенная на депозит, приносит доход в виде процентов; при снятии с депозита некоторой суммы базовая величина, с которой начисляются проценты, уменьшается. Как Раз эта ситуация и имеет место в случае с аннуитетом. Текущая стоимость аннуитета - это величина депозита с общей суммой причитающихся процентов, ежегодно уменьшающаяся на равные суммы. Эта сумма годового платежа включает в себя начисленные за очередной период проценты, а также некоторую часть основной суммы долга. Таким образом, погашение исходного долга осуществляется постепенно в течение всего срока действия аннуитета. Структура годового платежа постоянно меняется - начальные периоды в нем преобладают начисленные за очередной период проценты; с течением времени доля процентных платежей постоянно уменьшается и повышается доля погашаемой части основного долга. Логику и счетные процедуры метода рассмотрим на простейшем примере.
Пример
В банке получена ссуда на пять лет в сумме 20000 дол, под 13% годовых, начисляемых по схеме сложных процентов на непогашенный остаток. Возвращать нужно равными суммами в конце каждого года. Требуется определить величину годового платежа.
Для лучшего понимания логики метода депозитной книжка целесообразно рассуждать с позиции кредитора. Для банка данный контракт представляет собой инвестицию в размере 20000 дол., т.е. отток денежных средств, что и показано на схеме. В дальнейшем в течение пяти лет банк будет ежегодно получать в конце года сумму А, причем каждый годовой платеж будет включать проценты за истекший год и часть основной суммы долга. Так, поскольку в течение первого года заемщик пользовался ссудой в размере 20000 дол., то платеж, который будет сделав в конце этого года, состоит из двух частей: процентов за год в сумме 2600 дол. (13% от 20000) и погашаемой части долга в сумме (А - 2600 дол). В следующем году расчет будет повторен при условии, что размер кредита, которым пользуется заемщик, составит уже меньшую сумму по сравнению с первым годом, а именно: (20000-А + 2600). Отсюда видно, что с течением времени сумма процентов снижается, а доля платежа возрастает. Данный финансовый контракт можно представить в виде аннуитета постнумерандо, в котором известна его текущая стоимость, процентная ставка и продолжительность действия. Поэтому для нахождения величины годовою платежа А можно воспользоваться известной формулой.
Динамика платежей показана в Таблице. Отметим, что данные в ходе вычислений округлялись, поэтому величина процентов в последней строке найдена балансовым методом.
Год | Остаток ссуды на начало года | Сумма годового платежа | В том числе | Остаток на конец года | |
Проценты за год | Погашенная часть долга | ||||
1 | 2000 | 5687 | 2600 | 3087 | 16913 |
2 | 16913 | 5687 | 2199 | 3488 | 13425 |
3 | 13425 | 5687 | 1745 | 3942 | 9483 |
4 | 9483 | 5687 | 1233 | 4454 | 5029 |
5 | 5029 | 5687 | 658 | 5029 | 0 |
Данная таблица позволяет ответить на целый ряд дополнительных вопросов, представляющих определенный интерес для прогнозирования денежных потоков. В частности, можно рассчитать общую сумму процентных платежей, величину процентного платежа в 1-м периоде, долю кредита, погашенную в первые 11 лет, и т.п.
ОЦЕНКА АННУИТЕТА С ИЗМЕНЯЮЩЕЙСЯ ВЕЛИЧИНОЙ ПЛАТЕЖА
На практике возможны ситуации, когда величина платежа меняется со временем в сторону увеличения или уменьшения. В частности, при заключении договоров аренды в условиях инфляции может предусматриваться периодическое увеличение платежа, компенсирующее негативное влияние изменения цен. Оценка аннуитета в этом случае может также выполняться путем несложных расчетов с помощью финансовых таблиц. Технику вычислений рассмотрим на простейшем примере.5
Пример
Сдан участок в аренду на десять лет. Арендная плата будет осуществляться ежегодно по схеме постнумерандо на следующих Условиях: в первые шесть лет по 10 млн. руб., в оставшиеся четыре года по 11 млн. руб. Требуется оценить приведенную стоимость этого договора, если процентная ставка, используемая аналитиком, равна 15%.
Информация о работе Управление денежными потоками на предприятии