Автор работы: Пользователь скрыл имя, 21 Марта 2011 в 22:13, реферат
Вторя половина 16ого – вторая половина 19 века. Во второй половине обнаружились противоречия, а в конце века произошла НТР. Произошло разрушение прежней научной парадигме. Вот такой парадигмой, которая стала основой научного знания, явилась механика. Почему? Пожалуй, здесь надо иметь в виду для ряда факторов. Первый связан с тем, что именно механика оказалась самой продвинутой наукой, так как на неё был спрос. Поэтому именно вокруг механики трудились представители различных научных направлений и философских взглядов, потому что это внутри научное состояние позволяло обнаруживать ниши и заполнять их в рамках стройной научной системы.
Становление
классической науки
Вторя
половина 16ого – вторая половина
19 века. Во второй половине обнаружились
противоречия, а в конце века произошла
НТР. Произошло разрушение прежней
научной парадигме. Вот такой
парадигмой, которая стала основой
научного знания, явилась механика. Почему?
Пожалуй, здесь надо иметь в виду для ряда
факторов. Первый связан с тем, что именно
механика оказалась самой продвинутой
наукой, так как на неё был спрос. Поэтому
именно вокруг механики трудились представители
различных научных направлений и философских
взглядов, потому что это внутри научное
состояние позволяло обнаруживать ниши
и заполнять их в рамках стройной научной
системы. Это одна сторона, вторая сторона
связана с тем, что механистическое воззрение
на мир достаточно легко воспринималось
как истинное и непротиворечивое не только
специалистами по механике, но и обыденным
сознанием. Ситуация монооснования позволило
сформироваться науке как новому явлению
в познании мира. Потому что прежние знания
были донаучные знания. Они по своей форме
и структуре, по уровню системности не
могли характеризоваться как наука. Что
в этом смысле позволило становлению механики
как основы классической науки: Достаточно
богатые традиции познания механических
процессов. Они как бы на двух уровнях
находятся. На уровне обыденном ненаучном
они связаны с тем, что человек постоянно
сталкивается с различными аспектами
движения и, следовательно, стремится
осмыслить его. С т.з. знания к Новому времени
уже имелись серьёзные теоретические
по форме наработки, позволившие механике
стать основой классической науки.
Говоря о формировании классической физики, естественно, в первую очередь сказать об отце классической механики в ее современном виде Ньютоне.
Заложил основы современного естествознания. Физические работы в области механики, акустики, оптики. Сформулировал основные законы классической механики, открыл закон всемирного тяготения, дисперсию света, разработал дифференциальное и интегральное исчисления (независимо от Лейбница). “Математические начала натуральной философии” (1687) содержали основные понятия и аксиоматику механики, три закона динамики и закон всемирного тяготения. Открытие закона всемирного тяготения ознаменовало переход от кинематического описания солнечной системы к динамическому, он развил теорию формы Земли, теорию приливов и т.п. Установил основной закон внутреннего трения в жидкостях и газах, получил формулу для скорости распространения волн.
Создал физическую картину мира (Ньютонова теория пространства и времени): пространство и время – абсолютны. Выдвинул идею дальнодействия – мгновенной передачи действия на расстояние по пустому пространству.
В 1666 разложил при помощи призмы белый свет в спектр, открыл хроматическую аберрацию. В 1668 и 1671 сконструировал зеркальный телескоп – рефлектор без аберрации. Исследовал интерференцию и дифракцию (кольца Ньютона в тонких слоях). В 1675 предпринял попытку создать компромиссную корпускулярно-волновую теорию света.
По
мировозрению – второй после Декарта
великий представитель
В его честь названа единица силы – ньютон.
Первые работы Ньютона относятся к области оптики, но затем от экспериментальных исследований он перешел к обобщениям и увлекся вопросами механики.
1. Механика.
Именно в механике Ньютон достиг вершин своего творчества. Он обобщил все исследования предшественников и основные положения механики изложил в своей книге "Математические начала натуральной философии". В своих "Началах" Ньютон сформулировал три закона движения, обобщив при этом принцип инерции и понятие силы, ввел понятие массы и распространил действие законов механики на всю Вселенную. Если в оптике для Ньютона, как мы увидим ниже, присущи гениальность постановки и разносторонность опытов, то в механике его талант проявился, прежде всего, в упорядочении и обобщении частных результатов предшественников. Так, закон всемирного тяготения был сформулирован на основе существовавших в то время экспериментальных данных о движении планет, которые содержали только кинематическое описание, а Ньютон вскрыл причину такого движения, введя количественную характеристику гравитационного взаимодействия. И все же гениальные обобщения в механике были бы вряд ли возможны, если бы Ньютон не имел опыта экспериментатора, общей физической культуры, полученных им в оптике.
В
этом же трактате Ньютон сформулировал
правила рассуждения, которые должны
составлять основу всякого физического
исследования. Он не ставит задачи отыскания
причины явления и
Согласно ньютоновскому правилу индукции можно перенести действие законов на все тела, хотя эксперимент можно поставить лишь на некоторых. И в соответствии с правилами рассуждения следует считать правильным всякое утверждение, полученное из опыта с помощью индукции, до тех пор, пока не будут обнаружены другие явления, которые ограничивают это утверждение или противоречат ему.
Если Галилея мы называем основоположником экспериментального метода в физике, то величие Ньютона определяется не только тем, что он открыл фундаментальные законы физики, но и тем, что он создал основы физического мышления. Его путь построения физического знания, "метод принципов" оказался необычайно плодотворным и все последующие фундаментальные теории (электродинамика, термодинамика, теория относительности и квантовая теория) созданы по этим правилам.
Следует сказать еще об одной заслуге Ньютона - его мемуарах о дифференциальном и интегральном исчислении, которые были для него и остаются поныне важным средством для раскрытия физических закономерностей. Однако, в своих "Началах" Ньютон принял геометрическую форму изложения по всей вероятности для того, чтобы их могли понять возможно большее число читателей.
По существу принципов Ньютона достаточно для решения любой задачи механики. Этот успех, с одной стороны, обусловил огромный авторитет Ньютона в глазах следующих поколений ученых, а с другой, предопределил развитие механистических представлений, которые долго превалировали во всех областях физики.
На всем пути развития физики, начиная с Аристотеля, в науке просматривается стремление объяснения всех явлений природы с единых позиций. В 18 веке такую попытку физического синтеза предпринял один из крупнейших итальянских ученых (хорват по происхождению) Рожер Иосип Боскович (1711-1787). Основные свои идеи он наиболее полно изложил в работе "Теория натуральной философии, сведенная к единственному закону сил, существующих в природе", которая была опубликована в 1759 г. По Босковичу материя состоит из малых материальных точек, подчиняющихся законам динамики Ньютона. Для взаимодействия между ними характерно притяжение или отталкивание в зависимости от расстояния: по мере сближения частиц притяжение возрастает, достигает максимума, а затем уменьшается и переходит во все возрастающее отталкивание. С помощью этой теории можно объяснить все механические и физические явления: непроницаемость, протяженность, соударения, тяжесть, твердость, капиллярность, оптические явления, химические действия и все что угодно. Несмотря на всеобщее восхищение, эта скорее общефилософская работа в 18 веке последователей не имела, но уже в 19 веке оказала большое влияние на формирование современной атомистики.
Главное направление развития физики 18 века было скорее аналитическое, а не синтетическое. В это время широко организуются физические лаборатории, улучшаются приборы для исследований, анализируются и проверяются как экспериментальные результаты, так и выдвинутые ранее теории. 18 век по сравнению с предыдущим столетием был менее ярким, он не дал новых великих идей и ученых масштаба Галилея, Гюйгенса, Ньютона.
В
области механики наиболее яркое
достижение 18 века - создание аналитической
механики, где с помощью применения
методов математического
Помимо формулировки законов движения в среде без сопротивления, Ньютон рассматривал движение в жидкости, им разработана теория волнового движения в плотных средах - основа акустики. В 18 веке с применением математических методов английский математик Бруге Тейлор (1685-1731) решил основную задачу акустики о колебаниях струны, положив начало математической физики. Отцом экспериментальной акустики считают немецкого физика Эрнста Хладни (1756-1827), который первым точно исследовал колебания камертона. Все акустические явления объяснялись движением колеблющегося тела и частиц среды.
2. Оптика.
В числе первых работ в области классической оптики следует отметить труды Кеплера, который развил идеи Альхазена и рассматривал конусы лучей, исходящие из каждой точки.
Кеплер Иоганн (27.12.1571-15.11.1630) – немецкий физик, математик и астроном. Родился в Магсштадте (Вюртенберг) в семье обедневшего дворянина - солдата. Окончил Тюбингенский университет (1593). В 1594-1600 работал в Высшей школе в Граце. В 1600 переехал в Прагу к датскому астроному Тихо Браге, вскоре после смерти которого стал математиком при дворе императора Рудольфа II. В 1612 переехал в Линц, в 1626 – в Ульм. Последние годы жизни провел в бедности и странствиях.
Основные физические работы в области оптики. В трактате “Дополнения к Виттелию” (1604) изложил основы геометрической оптики и механизм видения. В 1604 сформулировал закон об обратно пропорциональной зависимости освещенности и квадрата расстояния от источника. Сконструировал телескоп – труба Кеплера, описал явление полного внутреннего отражения, получил формулу линзы. Предложил понятие силы как причины ускорения.
Используя наблюдения Т.Браге и свои собственные, открыл три закона движения планет (законы Кеплера), является одним из творцов небесной механики, был активным сторонником учения Коперника. Трактат “Сокращение Коперниковой астрономии” был занесен Ватиканом в список запрещенных книг. В 1627 – последняя крупная работа “Рудольфовы таблицы”, по которым несколько поколений астрономов с высокой точностью вычисляли положение планет в любой момент времени.
Кеплером,
по сути, построена современная