Современные концепции ощущения

Автор работы: Пользователь скрыл имя, 01 Декабря 2014 в 14:32, реферат

Описание работы

Актуальность темы исследования ощущений обусловлена той огромной ролью, которую они играют в нашей повседневной жизни. С житейской точки зрения трудно представить себе что-то более естественное, чем видеть, слышать, чувствовать прикосновение предмета.
Любой человек, сталкивающийся с таким сложным и многогранным явлением, как ощущение, конечно же, вправе спросить, зачем нужно изучать его.

Файлы: 1 файл

Matveeva (1).doc

— 178.50 Кб (Скачать файл)

   «В отличие от  импульсов, идущих по специфическому  пути проведения возбуждения, импульсы, поступающие в ретикулярную формацию, многократно отражаясь, передают не специальную информацию, связанную с тонким различением свойств предмета, а регулируют возбудимость корковых клеток, заканчиваются в коре синапсами неспецифических волокон».

   Проведение возбуждения  по неспецифическому пути характеризуется  изменением фоновой ритмики коры, которое наступает с некоторым опозданием после ответа коры на специфическое возбуждение. «В передаче активизирующего влияния на корковые нейроны участвуют две основные части ретикулярной системы – стволовая и таламическая, отличающиеся по характеру своего действия. К этим отделам ретикулярной формации на разных уровнях отходят специальные коллатерали, так что изолированное нарушение одной системы не исключает действия другой. Стволовая ретикулярная система оказывает влияние на всю кору, вызывая широко распространенную депрессию (десинхронизацию) медленных волн. В отличие от нее ретикулярная система таламуса обладает более избирательным действием; одни ее отделы локально влияют на передние сенсорные, а другие — на задние области коры, связанные с переработкой зрительно-слуховой информации». Тут необходимо отметить, что только совместная работа специфической и неспецифической ретикулярной систем может обеспечить полноценное восприятие раздражителя и его использование в регуляции поведения.

   Анализатор, таким  образом, выступает как сложная  афферентно-эфферентная система, деятельность  которой тесным образом связана  с работой ретикулярной формации, причем периферические рецепторы  в анализаторе являются не только приборами, воспринимающими раздражители, но также эффекторами, реагирующими на них повышением или понижением своей чувствительности через механизм обратных нервных связей. Данные связи анатомически представлены тонкими нервными волокнами, проводящими возбуждения из центральной нервной системы к периферии тела. Обратные нервные связи имеются в системе как специфического, так и неспецифического путей проведения возбуждения.

   Активизирующее влияние  обратной связи, относящейся к  ретикулярной системе, проявляется в снижении порога возбудимости рецептора и возрастании его лабильности, т.е. откликаемости на раздражители. Обратные связи между ретикулярной формацией и корой играют важную роль в поддержании необходимого уровня возбуждения коры. Они выполняют функции саморегуляции анализатора в зависимости от характера, действующего на него раздражителя.

   Таким образом, система  обратных связей, пишет Е.Н. Соколов, является «существенным механизмом  отбора и переработки сигналов, поступающих от рецепторных окончаний при действии предметов внешнего мира».

   Проанализировав  основные положения данного пункта  главы, приходим к выводу о  том, что основные зоны анализаторов  мозга построены по единому  принципу иерархической структурной  и функциональной организации, представляющей из себя единую цельную высокоорганизованную систему в обеспечении ощущений. Причем анализаторы тесным образом связаны и с работой ретикулярной формации.

 

   4 Детекторная концепция

   В настоящее время  в физиологии высшей нервной  деятельности достигнут значительный  прогресс. Прежде всего это касается  двух главных разделов, которые И.П. Павлов рассматривал как ключевые: механизма ассоциативной функции мозга (временной связи) и механизма анализаторов. Именно прогресс в изучении временной связи и анализаторов определил главные направления развития современной физиологии высшей нервной деятельности.

   Важным шагом в  развитии анализаторов явилось  открытие детекторного принципа кодирования информации в ЦНС и модульного принципа организации коры больших полушарий. Выявление детекторов простых признаков и комплексных сигналов (гностических единиц), константных детекторов в самых различных анализаторах убедительно подтвердило детекторную концепцию.

   Главным понятием  в концепции детекторного кодирования  служит представление о нейроне-детекторе. Нейрон-детектор - высокоспециализированная нервная клетка, способная избирательно реагировать на тот или иной признак сенсорного сигнала. Такие клетки выделяют в сложном раздражителе его отдельные признаки. Разделение сложного сенсорного сигнала на признаки для их раздельного анализа является необходимым этапом операции опознания образов в сенсорных системах.

   Нейроны-детекторы  были обнаружены в 60-е годы сначала в сетчатке лягушки, затем в зрительной коре кошки, а впоследствии и в зрительной системе человека.

   Информация об  отдельных параметрах стимула  кодируется нейроном-детектором  в виде частоты потенциалов  действия, при этом нейроны-детекторы  обладают избирательной чувствительностью по отношению к отдельным сенсорным параметрам.

   Наиболее детально  нейроны-детекторы исследованы в  зрительной системе. Речь идет в первую очередь об ориентационно и дирекционально-чувствительных клетках. За открытие феномена ориентационной избирательности нейронов зрительной коры кошки ее авторы Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии. Ориентационная избирательность нейрона заключается в том, что клетка дает максимальный по частоте и числу импульсов разряд при определенном угле поворота световой или темновой полоски, или решетки. В то же время при других ориентациях стимулов те же клетки отвечают плохо или не отвечают совсем. Эта особенность дает основание говорить об остроте настройки нейрона-детектора и предпочитаемом диапазоне реагирования. Дирекционально-избирательные нейроны реагируют на движение стимула, демонстрируя предпочтение в выборе направления и скорости движения.

   По своим способностям  реагировать на описанные характеристики  зрительных стимулов (ориентацию, скорость и направление движения) нейроны-детекторы делятся на три типа: простые, сложные и сверхсложные. Нейроны разного типа расположены в разных слоях коры и различаются по степени сложности и месту в цепи последовательной обработки сигнала.

   Кроме этого описаны  нейроны-детекторы, которые реагируют  в основном на стимулы, похожие  на те, что встречаются в жизни, например, движущуюся тень от  руки, циклические движения, напоминающие  взмахи крыльев и т.д. Сюда же  относятся нейроны, которые реагируют лишь на приближение и удаление объектов.

   В высших центрах  мозга обнаружены также зрительные  нейроны, особо чувствительные к стимулам, сходным с человеческим лицом или какими-то его частями. Ответы этих нейронов регистрируются при любом расположении, размере, цвете «лицевого раздражителя». Важно отметить, что эти нейроны находятся не только в коре больших полушарий, но и в подкорковых структурах мозга, в частности, в зрительных центрах таламуса. Иными словами, среди внешних стимулов есть наиболее «предпочтительные», которые являются наиболее «удобными» для обработки нейронными механизмами восприятия.

   Предполагается также, что существуют нейроны с возрастающей  способностью к обобщению отдельных признаков объектов и пол и модальных, т.е. обладающих способностью реагировать на стимулы разных сенсорных модальностей (зрительно-слуховых, зрительно-соматосенсорных и т.д.).

   Описаны нейроны-детекторы  и в других сенсорных системах: слуховой и соматосенсорной. В  первом случае речь идет о  детектировании положения источника звука в пространстве и направления его движения. Во-втором, активность нейронов детекторов связана с определением движения тактильного стимула по коже или величиной суставного угла при изменении положения конечности.

   Нейроны-детекторы обеспечивают постоянный «мониторинг» изменений, происходящих в окружающей среде, и совокупная картина их деятельности создает чрезвычайно динамичную сенсорную модель внешней среды.

   В заключение необходимо  отметить следующее, несмотря на  то, что имеющихся данных о механизмах детектирования и в зрительной, и особенно в других модальностях (слуховой, соматосенсорной, обонятельной) явно недостаточно, тем не менее, многие исследователи в настоящее время рассматривают принцип нейронного детектирования как универсальный принцип строения и функционирования всех сенсорных систем.

 

   5 Концепция информационного синтеза А.М. Иваницкого

   Субъективный опыт  возникает в результате определенной  организации процессов мозга и сопоставления в зонах коры вновь поступившей информации с извлеченной из памяти. Благодаря этому картина внешних событий как бы проецируется на индивидуальный опыт субъекта, встраиваясь в личностный контекст. Данную гипотезу в настоящее время разделяют многие специалисты, а впервые она была выдвинута Иваницким А.М. в 1970-х годах в результате исследований мозговых механизмов ощущений.

   Был проведен эксперимент  с целью сопоставления количественных  показателей, описывающих ответ на поступивший сигнал. Участник эксперимента решал задачу различения интенсивности двух близких по силе раздражителей (в одной серии — зрительных, в другой — кожных). В ходе опыта фиксировали активность мозга в виде так называемых вызванных потенциалов (ВП), иными словами — электрическую реакцию на вновь поступивший от анализаторов чувств сигнал. Она представляет собой сложное по форме колебание, состоящее из ряда последовательных компонентов. Важно было понять, какие информационные процессы мозга они отражают.

   Предыдущими исследованиями  было установлено: ранние компоненты ВП отражают в основном физические параметры стимула, а поздние — его значимость. Для определения количественных параметров ощущений использовали методы теории обнаружения сигнала, рассматривающей восприятие как результат взаимодействия сенсорных и мотивационных факторов.

   Получив соответствующие  данные, Иваницкий А.М. вычислил соотношения корреляции между ними. Наиболее существенной оказалась взаимозависимость промежуточных волн вызванных потенциалов с обоими факторами восприятия: показателем сенсорной чувствительности и критерием решения. Эта двойная корреляция отражала, таким образом, синтез информации о физических и сигнальных свойствах стимула на нейронах так называемой проекционной коры, куда поступают сигналы от анализаторв. Пиковая латентностъ (время от момента воздействия раздражителя до появления ответной реакции) волн вызванных потенциалов составила около 150 мс.

   Принципиально важно, что этот временной интервал  достаточно точно совпал со  скоростью возникновения ощущений, впервые измеренной еще в 20-30-е годы XX в. в психофизических опытах с использованием феномена «обратной маскировки».

   Суть ее в следующем: если после первого слабого  стимула через короткий интервал  следует второй, более сильный, первый  сигнал не воспринимается. Постепенно увеличивая паузу между слабым и сильным (маскирующим) сигналами, можно найти интервал, при котором маскирующий эффект исчезает, так как ощущение на первый сигнал уже сформировано. Было установлено: ощущение появляется примерно через 150 мс после действия стимула.

   Наиболее же достоверные  данные (кстати, близкие к приведенным  выше) были получены в 1990-х годах, когда в качестве маскирующего  сигнала использовали прямую стимуляцию коры коротким магнитным импульсом. При этом эффект маскировки возникал лишь в случае приложения магнитного импульса к проекционной (в данном случае зрительной) коре, т.е. только там, где наблюдалась описанная выше двойная корреляция волн вызванных потенциалов с показателями восприятия. Все эти данные свидетельствовали: ощущение возникает значительно позднее прихода сенсорных импульсов в кору, что занимает всего около 30 мс. Следовательно, ощущение — результат сложной организации нервных процессов, которая и была исследована Иваницким А.М.

   Основываясь на  данных о физиологическом генезе волн вызванного потенциала, был описан механизм, обеспечивающий синтез информации. Он включал кольцевое движение возбуждения из проекционной коры в ассоциативную (височную для зрительных стимулов), затем в область гиппокампа (Гиппокамп - структура головного мозга в основании височной доли полушарий; входит в состав лимбической системы; участвует в эмоциональных реакциях и механизмах памяти. Этот цикл Иваницкий определил, как «круг ощущений». Он позволяет сравнивать сенсорный сигнал со сведениями, извлеченными из памяти, что предположительно лежит в основе перехода физиологического процесса на уровень психического, субъективного переживания. В итоге возникшее ощущение не только точно передает физические характеристики стимула, но и эмоционально окрашено. Описанная концепция получила название гипотезы информационного синтеза. В последующие годы она нашла подтверждение во многих исследованиях. Независимо от данных, полученных Иваницким, сходные положения высказал американский ученый Джералд Эдельман (нобелевский лауреат 1972 г. за описание структуры антител), разработавший нейробиологическую теорию сознания (в основе ее лежит идея «повторного входа»).

   Помимо информационного  синтеза возврат возбуждения  в кору обеспечивает и интеграцию отдельных признаков стимула в единый образ. Важную роль в последнем процессе играет гамма-ритм электроэнцефалограммы (ЭЭГ) с частотой около 40 Гц. Синхронизация биопотенциалов мозга на определенном ритме способствует объединению нейросетей в единую систему, что необходимо для поддержания сознания.

   Таким образом, определим  ключевые моменты этой концепции. Как уже было сказано, она описывает  мозговые механизмы оценки сигналов. Эта оценка основана на двух  видах информации о стимуле: его  физических параметрах и сигнальной, т.е. биологической значимости. Анализ свойств стимула по этим параметрам связан с функцией различных мозговых структур, а соответствующая информация поступает к корковым центрам по различным путям.

Информация о работе Современные концепции ощущения