Синергетика - наука 21 века

Автор работы: Пользователь скрыл имя, 04 Февраля 2011 в 17:58, доклад

Описание работы

Цель доклада – попытаться на доступном уровне определить существо синергетики, как нового направления современной научной мысли и очертить круг исследуемых ею вопросов с позиции неискушенного разума. Литература по теме обширна. Однако в раскрытии вопроса она либо опирается на специальные знания частных научных теорий (что мало помогает неспециалисту в данных областях), либо даже будучи в известной степени популярной, не позволяет увидеть глубокую суть направления. Моя работа, в сущности - компиляция многих источников, результат поиска в описании синергетики как перспективного направления современной научной мысли.

Содержание работы

Введение
1. Возникновение термина «Синергетика»
2. От хаоса к порядку. Синергетика как наука.
1. Предмет, методы и школы синергетики
2. Синергетический подход в естествознании
3. Специфика синергетики
3.1. Отсутствие стандарта терминов
3.2. Междисциплинарность синергетики
3.3. Взгляд с позиции теории динамических систем
3.4. Синергетический процесс с социальной точки зрения
3.5. Подходы к анализу систем
4. Характеристики самоорганизующихся систем
4.1. Открытость
4.2. Нелинейность
4.3. Диссипативность
5. Системная модель мира
6. Основы теории самоорганизации систем
6.1. Самоорганизация и эволюция сложных систем, далеких от равновесия
6.2. Синергетическая картина мира
6.3. Самоорганизация Вселенной
6.4. Самоорганизация и эволюция живого вещества.
7. Значение синергетики для науки н мировоззрения.
8. О критике синергетики и синергетиков
Заключение
Литература

Файлы: 1 файл

Синергетика - наука 21 века.doc

— 255.50 Кб (Скачать файл)
 

     Синергетика объясняет процесс самоорганизации  в сложных системах следующим  образом:

     Система должна быть открытой. Закрытая система  в соответствии с законами термодинамики  должна в конечном итоге прийти к состоянию с максимальной энтропией и прекратить любые эволюции.

     Открытая  система должна быть достаточно далека от точки термодинамического равновесия. В точке равновесия сколь угодно сложная система обладает максимальной энтропией и не способна к какой-либо самоорганизации. В положении, близком к равновесию и без достаточного притока энергии извне, любая система со временем ещё более приблизится к равновесию и перестанет изменять своё состояние.

     Фундаментальным принципом самоорганизации служит возникновение нового порядка и усложнение систем через флуктуации (случайные отклонения) состояний их элементов и подсистем. Такие флуктуации обычно подавляются во всех динамически стабильных и адаптивных системах за счёт отрицательных обратных связей, обеспечивающих сохранение структуры и близкого к равновесию состояния системы. Но в более сложных открытых системах, благодаря притоку энергии извне и усилению неравновесности, отклонения со временем возрастают, накапливаются, вызывают эффект коллективного поведения элементов и подсистем и, в конце концов, приводят к «расшатыванию» прежнего порядка и через относительно кратковременное хаотическое состояние системы приводят либо к разрушению прежней структуры, либо к возникновению нового порядка. Поскольку флуктуации носят случайный характер, то появление любых новаций в мире (эволюций, революций, катастроф) обусловленно действием суммы случайных факторов. Об этом говорили античные философы Эпикур (341—270 до н. э.) и Лукреций Кар (99-45 до н. э.)

     Самоорганизация, имеющая своим исходом образование через этап хаоса нового порядка или новых структур, может произойти лишь в системах достаточного уровня сложности, обладающих определённым количеством взаимодействующих между собой элементов, имеющих некоторые критические параметры связи и относительно высокие значения вероятностей своих флуктуаций. В противном случае эффекты от синергетического взаимодействия будут недостаточны для появления коллективного поведения элементов системы и тем самым возникновения самоорганизации. Недостаточно сложные системы не способны ни к спонтанной адаптации ни, тем более, к развитию и при получении извне чрезмерного количества энергии теряют свою структуру и необратимо разрушаются.

     Этап  самоорганизации наступает только в случае преобладания положительных обратных связей, действующих в открытой системе, над отрицательными обратными связями. Функционирование динамически стабильных, неэволюционирующих, но адаптивных систем — а это и гомеостаз в живых организмах и автоматические устройства — основывается на получении обратных сигналов от рецепторов или датчиков относительно положения системы и последующей корректировки этого положения к исходному состоянию исполнительными механизмами. В самоорганизующейся, в эволюционирующей системе возникшие изменения не устраняются, а накапливаются и усиливаются вследствие общей положительной реактивности системы, что может привести к возникновению нового порядка и новых структур, образованных из элементов прежней, разрушенной системы. Таковы, к примеру, механизмы фазовых переходов вещества или образования новых социальных формаций.

     Самоорганизация в сложных системах, переходы от одних структур к другим, возникновение  новых уровней организации материи  сопровождаются нарушением симметрии. При описании эволюционных процессов необходимо отказаться от симметрии времени, характерной для полностью детерминированных и обратимых процессов в классической механике. Самоорганизация в сложных и открытых — диссипативных системах, к которым относится и Жизнь, и Разум, а согласно общей теории относительности и вся Вселенная в целом, приводят к необратимому разрушению старых и к возникновению новых структур и систем, что наряду с явлением неубывания энтропии в закрытых системах обуславливает наличие «стрелы времени» в Природе. 
 
 
 
 

  1. Специфика синергетики
    1. Отсутствие  стандарта терминов

     Синергетика, занимающаяся изучением процессов  самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы, еще далека от завершения и единой общепринятой терминологии (в том числе и единого названия всей теории) пока не существует. Бурные темпы развития новой области, не оставляют времени на унификацию понятий и приведение в стройную систему всей суммы накопленных фактов. Кроме того, исследования в новой области ввиду ее специфики ведутся силами и средствами многих современных наук, каждая из которых обладает свойственными ей методами и сложившейся терминологией. Параллелизм и разнобой в терминологии и системах основных понятий в значительной мере обусловлены также различием в подходе и взглядах отдельных научных школ и направлений и в акцентировании ими различных аспектов сложного и многообразного процесса самоорганизации. Отсутствие в синергетике единого общепринятого научного языка глубоко символично для науки, занимающейся явлениями развития и качественного преобразования.

       Разумеется, строгое определение  синергетики требует уточнения  того, что следует считать большим  числом частей и какие взаимодействия  подпадают под категорию сложных. Считается, что сейчас строгое определение, даже если бы оно было возможным, оказалось бы явно преждевременным. Поэтому далее (как и в работах самого Хакена и его последователей) речь пойдет лишь об описании того, что включает в себя понятие "синергетика", и её отличительных особенностей.

    1. Междисциплинарность синергетики

     Системы, составляющие предмет изучения синергетики, могут быть самой различной природы, и содержательно и специально изучаться различными науками, например, физикой, химией, биологией, математикой, нейрофизиологией, экономикой, социологией, лингвистикой (перечень наук легко можно было бы продолжить). Каждая из наук изучает "свои" системы своими, только ей присущими, методами и формулирует результаты на "своем" языке. При существующей далеко зашедшей дифференциации науки это приводит к тому, что достижения одной науки зачастую становятся недоступными вниманию и тем более пониманию представителей других наук.

     В отличие от традиционных областей науки  синергетику интересуют общие закономерности эволюции (развития во времени) систем любой природы. Отрешаясь от специфической природы систем, синергетика обретает способность описывать их эволюцию на интернациональном языке, устанавливая своего рода изоморфизм двух явлений, изучаемых специфическими средствами двух различных наук, но имеющих общую модель, или, точнее, приводимых к общей модели. Обнаружение единства модели позволяет синергетике делать достояние одной области науки доступным пониманию представителей совсем другой, быть может, весьма далекой от нее области науки и переносить результаты одной науки на, казалось бы, чужеродную почву.

     Следует особо подчеркнуть, что синергетика  отнюдь не является одной из пограничных наук типа физической химии или математической биологии, возникающих на стыке двух наук (наука, в чью предметную область происходит вторжение, в названии пограничной науки представлена существительным; наука, чьими средствами производится "вторжение", представлена прилагательным; например, математическая биология занимается изучением традиционных объектов биологии математическими методами). По замыслу своего создателя профессора Хакена, синергетика призвана играть роль своего рода метанауки, подмечающей и изучаюшей общий характер тех закономерностей и зависимостей, которые частные науки считали "своими". Поэтому синергетика возникает не на стыке наук в более или менее широкой или узкой пограничной области, а извлекает представляющие для нее интерес системы из самой сердцевины предметной области частных наук и исследует эти системы, не апеллируя к их природе, своими специфическими средствами, носящими общий ("интернациональный") характер по отношению к частным наукам. Физик, биолог, химик и математик видят свой материал, и каждый из них, применяя методы своей науки, обогащает общий запас идей и методов синергетики.

     Как и всякое научное направление, родившееся во второй половине ХХ века, синергетика  возникла не на пустом месте. Ее можно  рассматривать как преемницу  и продолжательницу многих разделов точного естествознания, в первую очередь (но не только) теории колебаний и качественной теории дифференциальных уравнений. Именно теория колебаний с ее "интернациональным языком", а впоследствии и "нелинейным мышлением" (Л.И. Мандельштам) стала для синергетики прототипом науки, занимающейся построением моделей систем различной природы, обслуживающих различные области науки. А качественная теория дифференциальных уравнений, начало которой было положено в трудах Анри Пуанкаре, и выросшая из нее современная общая теория динамических систем вооружила синергетику значительной частью математического аппарата.

    1. Взгляд  с позиции теории динамических систем

     Любые объекты окружающего нас мира представляют собой системы, то есть совокупность составляющих их элементов и связей между ними.

     Элементы  любой системы, в свою очередь, всегда обладают некоторой самостоятельностью поведения. При любой формулировке научной проблемы всегда присутствуют определенные допущения, которые отодвигают за скобки рассмотрения какие-то несущественные параметры отдельных элементов. Однако этот микроуровень самостоятельности элементов системы существует всегда. Поскольку движения элементов на этом уровне обычно не составляют интереса для исследователя, их принято называть “флуктуациями”. В нашей обыденной жизни мы также концентрируемся на значительных, информативных событиях, не обращая внимания на малые, незаметные и незначительные процессы.

     Малый уровень индивидуальных проявлений отдельных элементов позволяет  говорить о существовании в системе  некоторых механизмов коллективного  взаимодействия – обратных связей. Когда коллективное, системное взаимодействие элементов приводит к тому, что те или иные движения составляющих подавляются, следует говорить о наличии отрицательных обратных связей. Собственно говоря, именно отрицательные обратные связи и создают системы, как устойчивые, консервативные, стабильные объединения элементов. Именно отрицательные обратные связи, таким образом, создают и окружающий нас мир, как устойчивую систему устойчивых систем.

     Стабильность  и устойчивость, однако, не являются неизменными. При определенных внешних условиях характер коллективного взаимодействия элементов изменяется радикально. Доминирующую роль начинают играть положительные обратные связи, которые не подавляют, а наоборот – усиливают индивидуальные движения составляющих. Флуктуации, малые движения, незначительные прежде процессы выходят на макроуровень. Это означает, кроме прочего, возникновение новой структуры, нового порядка, новой организации в исходной системе.

     Момент, когда исходная система теряет структурную  устойчивость и качественно перерождается, определяется системными законами, оперирующими такими системными величинами, как энергия, энтропия.

     Особую роль в мировом эволюционном процессе играет принцип минимума диссипации энергии. Сформулируем его следующим образом: если допустимо не единственное состояние системы (процесса), а целая совокупность состояний, согласных с законами сохранения и связями, наложенными на систему (процесс), то реализуется то ее состояние, которому отвечает минимальное рассеяние энергии, или, что то же самое, минимальный рост энтропии ( Н.Н.Моисеев, академик РАН).

     Справедливости  ради необходимо отметить, что принцип  минимума диссипации (рассеяния) энергии, приведенный выше в изложении академика Моисеева, не признается в качестве универсального естественнонаучного закона. Илья Пригожин, в частности, указал на тип систем, не подчиняющихся этому принципу. Оставим, однако, ведущим ученым фундаментальные вопросы. С другой стороны, употребление термина «принцип», а не «закон», оставляет возможность уточнения формулировок.

     Моменты качественного изменения исходной системы называются бифуркациями состояния и описываются соответствующими разделами математики – теория катастроф, нелинейные дифференциальные уравнения и т.д. Круг систем, подверженных такого рода явлениям, оказался настолько широк, что позволил говорить о катастрофах и бифуркациях, как об универсальных свойствах материи.

     Таким образом, движение материи вообще можно  рассматривать, как чередование этапов адаптационного развития и этапов катастрофного поведения. Адаптационное развитие подразумевает изменение параметров системы при сохранении неизменного порядка ее организации. При изменении внешних условий параметрическая адаптация позволяет системе приспособиться к новым ограничениям, накладываемым средой.

     Катастрофные  этапы – это изменение самой  структуры исходной системы, ее перерождение, возникновение нового качества. При  этом оказывается, что новая структура  позволяет системе перейти на новую термодинамическую траекторию развития, которая отличается меньшей скоростью производства энтропии, или меньшими темпами диссипации энергии.

     Возникновение нового качества, как уже отмечалось, происходит на основании усиления малых случайных движений элементов – флуктуаций. Это в частности объясняет тот факт, что в момент бифуркации состояния системы возможно не одно, а множество вариантов структурного преобразования и дальнейшего развития объекта. Таким образом, сама природа ограничивает наши возможности точного прогнозирования развития, оставляя, тем не менее, возможности важных качественных заключений.

Информация о работе Синергетика - наука 21 века