Самоорганизация как источник и основа эволюционных систем

Автор работы: Пользователь скрыл имя, 11 Сентября 2011 в 13:13, контрольная работа

Описание работы

Наш мир, всё, что доступно в нём наблюдению, претерпевают непрерывные изменения – мы наблюдаем его непрекращающуюся эволюцию. Все подобные изменения происходят за счёт сил внутреннего взаимодействия, во всяком случае, никаких внешних по отношению к нему сил мы не наблюдаем. Согласно принципу Бора, существующим мы имеем право считать лишь то, что наблюдаемо или может быть сделано таковым. Следовательно, подобных сил не существует.

Содержание работы

Введение
Формирование идей самоорганизации
Самоорганизация как основа эволюции
Самоорганизация в диссипативных структурах
Самоорганизация - источник и основа эволюции систем
Эволюция и теория систем
Самоорганизация в различных видах эволюции

7. Эволюция в социальных и гуманитарных системах

Заключение

Список использованных источников

Файлы: 1 файл

КСЕ.doc

— 81.00 Кб (Скачать файл)

Образовательное учреждение профсоюзов

высшего профессионального образования

«Академия труда и социальных отношений»

Курганский  филиал 

Социально-экономический  факультет 
 

КОНТРОЛЬНАЯ РАБОТА 

по дисциплине: «Концепции современного естествознания» 

на тему: « Самоорганизация как источник и основа эволюционных систем»

       (Вариант)   
 

Студент  гр. ЗМб-2280                                                            С.А.Степанов

Преподаватель (уч.степень, уч.звание)                                  И.О. Фамилия  

                                             

Курган  – 2011 

Содержание

     Введение

  1. Формирование идей самоорганизации
  2. Самоорганизация как основа эволюции
  3. Самоорганизация в диссипативных структурах
  4. Самоорганизация - источник и основа эволюции систем
  5. Эволюция и теория систем
  6. Самоорганизация в различных видах эволюции

    7. Эволюция в социальных и гуманитарных системах

    Заключение

    Список использованных источников 
     
     
     
     
     
     
     
     
     
     
     
     

Введение 

       Наш мир, всё, что доступно в нём наблюдению, претерпевают непрерывные изменения – мы наблюдаем его непрекращающуюся эволюцию. Все подобные изменения происходят за счёт сил внутреннего взаимодействия, во всяком случае, никаких внешних по отношению к нему сил мы не наблюдаем. Согласно принципу Бора, существующим мы имеем право считать лишь то, что наблюдаемо или может быть сделано таковым. Следовательно, подобных сил не существует. Таким образом, всё, что происходит вокруг нас, мы можем считать процессом самоорганизации, то есть процессом, идущим за счёт внутренних стимулов, не требующих вмешательства внешних факторов, не принадлежащих системе. К числу таких процессов относится также и становление и действие Разума, ибо он родился в системе в результате её эволюции.

       Итак, весь процесс эволюции системы – процесс самоорганизации. Мир всё время меняется. Мы не можем утверждать, что процесс самоорганизации направлен на достижение состояния равновесия ( под которым понимается абсолютный хаос), у нас нет для этого опытных оснований, гораздо больше данных для утверждения обратного - мир непрерывно развивается, и в этом изменении просматривается определённая направленность, отличная от стремления к равновесию.

      Для описания основ процесса самоорганизации удобно (хотя и заведомо недостаточно) использовать терминологию дарвиновской триады: наследственность, изменчивость, отбор, придав этим понятиям более широкий смысл.

      Изменчивость в этом более широком смысле – это вечно присутствующие факторы случайности и неопределённости. Без предположения о непрерывно действующих случайных факторах, постоянная эволюция системы, сопровождающаяся появлением новых качественных особенностей, по-видимому, невозможна.

     “Память системы” в реальных системах в том смысле, как мы её определили, чаще всего оказывается ограниченной: и бесконечная память и её отсутствие - лишь абстракции, которые удобны для интерпретации. Примером системы, лишённой памяти, является развитое турбулентное движение.

      Понятие “принципов отбора” является самым трудным среди понятий дарвиновской триады. Процессы самоорганизации следуют определённым правилам, законам. Это утверждение - некое эмпирическое обобщение, вопрос о происхождении этих правил лежит вне рационализма, как и вопрос о рождении Вселенной.

     К числу таких законов относятся  прежде всего законы сохранения и 2-е начало термодинамики (да и другие законы тоже). Таким образом, среди мыслимо допустимых процессов в неживой природе существуют (наблюдаемы, или доступны наблюдению) лишь определённые классы движений, подчиняющиеся определённым правилам. Подобные же правила существуют в природе и обществе. Вот эти правила и называют принципами отбора. Иными словами, принципы отбора - это те же самые законы физики, химии, биологии, законы общественного развития, которые из мыслимо допустимых движений “отбирают” те, которые мы и наблюдаем.

     Итак, Вселенная - непрерывно эволюционирующий объект ( как и любые его составляющие). Но внутренние стимулы и возможности  развития Вселенной, определяющие процессы самоорганизации, ограничены реальными  рамками, берегами допустимых эволюционных каналов. 
 
 

1. Формирование идей  самоорганизации

    Ранние подходы к изучению самоорганизации в отдельных науках ясно обозначились еще в XVIII в. Они связаны прежде всего с деятельностью основоположника классической политической экономии Адама Смита (1723-- 1790), который в своем главном труде "Исследование о природе и причинах богатства народов" ясно выразил идею о том, что спонтанный порядок на рынке является результатом взаимодействия различных, часто противоположных стремлений, целей и интересов многочисленных его участников. Именно такое взаимодействие приводит к установлению того никем не предусмотренного и незапланированного порядка на рынке, который выражается в равновесии спроса и предложения. Эту главную свою мысль А. Смит выразил в форме метафоры "невидимой руки", которая регулирует цены на рынке.

     Важно при этом обратить внимание на то, что идеи самоорганизации, самосовершенствования и улучшения деятельности социальных систем и общественных учреждений упомянутые ученые связывают с эволюционными процессами, которые происходят в жизнедеятельности людей. Конечно, чаще всего идеи самоорганизации и эволюции не были четко и ясно выражены, они скорее были результатом интуитивного прозрения, чем строгого научного исследования. Тем не менее, от этого их ценность не уменьшается, ибо они подготовили почву для будущих исследований процессов самоорганизации и эволюции.

      Эволюционная теория Дарвина послужила мощным толчком для развертывания исследований о механизмах развития различных природных и социальных систем. Если физические и химические методы исследования многое дали для анализа структуры и функционирования живых систем, то эволюционная концепция биологии заставила физиков и химиков по-новому взглянуть на объекты своих исследований и природу в целом. Они вынуждены были считаться с тем глубоким противоречием, которое существовало между их взглядами и достоверными фактами и теоретически обоснованными утверждениями дарвиновской эволюционной теории. Формирование идей самоорганизации в физике было продиктовано как раз стремлением преодолеть указанное противоречие, которое свидетельствовало о том, что некоторые ее основополагающие понятия и принципы имеют слишком идеализированный характер и неадекватно отображают исследуемую реальность.

       Резкое противоречие между биологической и физической эволюцией удалось разрешить только после того, когда физика обратилась к понятию открытой системы, т. е. системы, которая обменивается с окружающей средой веществом, энергией и информацией. При определенных условиях в открытых системах могут возникнуть процессы самоорганизации в результате получения новой энергии и вещества извне и диссипации, или рассеяния, использованной в системе энергии. Таким образом, было установлено, что ключ к пониманию процессов самоорганизации содержится в исследовании процессов взаимодействия системы с окружающей средой.

      Видный теоретик самоорганизации И.Р. Пригожий пришел к своим идеям из анализа специфических химических реакций, которые приводят к образованию определенных пространственных структур с течением времени при изменении концентрации реагирующих веществ. Вместе со своими сотрудниками он построил математическую модель таких реакций, которые впервые экспериментально были изучены нашими отечественными учеными Б. Белоусовым и А. Жаботинским 

2. Самоорганизация  как основа эволюции

     Несмотря  на то, что идеи эволюции, начиная  от космогонической гипотезы Канта - Лапласа и кончая эволюционной теорией Дарвина, получили широкое признание в науке, тем не менее, они формулировались скорее в интуитивных, чем теоретических терминах. Поэтому в них трудно было выявить тот общий механизм, посредством которого осуществляется эволюция.

      Главным препятствием здесь служило резкое противопоставление живых систем неживым, общественных-природным. В основе такого противопоставления лежали слишком абстрактные, а потому неадекватные понятия и принципы классической термодинамики об изолированных и равновесных системах. Именно поэтому эволюция физических систем связывалась с их дезорганизацией, что противоречило общепринятым в биологических и социальных науках представлениям об эволюции.

     Чтобы разрешить возникшее глубокое противоречие между классической термодинамической эволюцией, с одной стороны, и эволюцией биологической и социальной, с другой, -- физики вынуждены были отказаться от упрощенных понятии и схем и вместо них ввести понятия об открытых системах и необратимых процессах. Благодаря этому оказалось возможным развить новую нелинейную и неравновесную термодинамику необратимых процессов, которая стала основой современной концепции самоорганизации.

3. Самоорганизация  в диссипативных  структурах

      Многочисленные примеры самоорганизации в гидродинамических, тепловых и других физических системах, не говоря уже о системах живой природы, ученые замечали давно. Но в силу доминировавших в науке своего времени взглядов они попросту не замечали их либо старались объяснить с помощью существовавших тогда понятий и принципов.

      Поскольку в науке XVII -- первой половины XIX вв. доминировала механистическая парадигма, постольку в ней все процессы пытались объяснить путем сведения их к законам механического движения материальных частиц. Предполагалось, что эти частицы могут двигаться, не взаимодействуя друг с другом, а самое главное -- их положение и скорость движения будут точно и однозначно определенными в любой момент в прошлом, настоящем и будущем, если заданы их начальное положение и скорость. Следовательно, в таком механическом описании время не играет никакой роли и поэтому его знак можно менять на обратный. Вследствие этого подобные процессы стали называть обратимыми. В некоторых случаях, когда речь идет о немногих и относительно изолированных друг от друга телах и системах, такой абстрактный подход может оказаться целесообразным и полезным. Однако в большинстве реальных случаев приходится учитывать изменение систем во времени, т. е. иметь дело с необратимыми процессами.

      Как уже отмечалось выше, впервые такие процессы стали изучаться в термодинамике, которая начала исследовать принципиально отличные от механических тепловые явления. Тепло передается от нагретого тела к пространстве, все эти простейшие явления нельзя описывать без учета фактора времени. На такой феноменологической основе были сформулированы исходные начала или законы классической термодинамики, среди которых важнейшую роль играет закон энтропии. Понятие энтропии характеризует ту часть полной энергии системы, которая не может быть использована для производства работы. Поэтому в отличие от свободной энергии она представляет собой деградированную, отработанную энергию. Если обозначить свободную энергию через F, энтропию -- S, то полная энергия системы Е будет равна:

E=F+ST, 

где Т -- абсолютная температура по Кельвину.

      Согласно второму закону термодинамики, энтропия в замкнутой системе постоянно возрастает и в конечном счете стремится к своему максимальному значению. Следовательно, по степени возрастания энтропии можно судить об эволюции замкнутой системы, а тем самым и о времени ее изменения. Так впервые в физическую науку были введены понятия времени и эволюции, связанные с изменением систем. Но понятие эволюции в классической термодинамике, как мы уже отмечали выше, рассматривается совсем иначе, чем в общепринятом смысле. Это стало вполне очевидным после того, когда немецкий ученый Л. Больцман (1844-1906) стал интерпретировать энтропию как меру беспорядка в системе. Таким образом, второй закон можно было теперь сформулировать так: замкнутая система, предоставленная самой себе, стремится к достижению наиболее вероятного состояния, заключающегося в ее максимальной дезорганизации.

     Между тем классическая термодинамика именно на них как раз и опиралась и поэтому рассматривала, например, частично открытые системы или находящиеся вблизи от точки термодинамического равновесия как вырожденные случаи изолированных равновесных систем. Очевидно, что для объяснения процессов самоорганизации необходимо было ввести новые понятия и принципы, которые бы адекватно описывали реальные процессы самоорганизации, происходящие в природе и обществе.

      Наиболее фундаментальным из них, как мы уже знаем, является понятие открытой системы, которая способна обмениваться с окружающей средой веществом, энергией или информацией. Поскольку между веществом и энергией существует взаимосвязь, т.е. можно сказать, что система в ходе своей эволюции производит энтропию, которая, однако, не накапливается в ней, а удаляется и рассеивается в окружающей среде. Вместо нее из среды поступает свежая энергия и именно вследствие такого непрерывного обмена энтропия системы может не возрастать, а оставаться неизменной или даже уменьшаться.          Отсюда становится ясным, что открытая система не может быть равновесной, потому ее функционирование требует непрерывного поступления энергии и вещества из внешней среды, вследствие чего неравновесие в системе усиливается.

Информация о работе Самоорганизация как источник и основа эволюционных систем