Понятие биогенной миграции

Автор работы: Пользователь скрыл имя, 05 Ноября 2010 в 19:49, Не определен

Описание работы

Биогенная миграция - одна из наиболее сложных форм миграции, обусловленная совокупной жизнедеятельностью живых организмов

Файлы: 1 файл

Лек Биогенная миграция.doc

— 86.00 Кб (Скачать файл)

    Менее реакционноспособный углерод (типа вещества каменных метеоритов, из которых, вероятно, образовалась мантия Земли) не принимал участия в газообразных соединениях, а поступал на поверхность в составе изверженных пород. Только при выветривании горных пород в окислительных условиях этот углерод также превращается в СО2.

    Оценить запасы углерода в биоте (биомассе живых организмов), атмосфере, гидросфере, почве и других подсистемах (своеобразных «резервуарах» углерода) биосферы можно лишь весьма приближенно. Две основные причины не позволяют сделать такую оценку принципиально более точной:

1)   недостаток знаний и наблюдательных данных;

2)   нарастающее антропогенное влияние  на все элементы баланса углерода в биосфере от прямых выбросов СО2 в атмосферу, до влияния загрязнителей на биохимические процессы субклеточного уровня.

    Процессы  и механизмы круговорота  углерода

     СО2 поступает в атмосферу в результате клеточного дыхания и процессов сгорания.

    СО2 в атмосфере (23,5*1011 т) или в растворенном состоянии в воде, служит сырьем для фотосинтеза растений и переработки углерода в органическое вещество (углеводы). Эти вещества служат углеводным питанием животным и наземным растениям.

При дыхании  организмов СО2 возвращается в атмосферу. Когда наступает смерть, то бактерии разлагают и минерализуют трупы, в результате «почвенного дыхания» углерод остатков окисляется до углекислого газа и поступает в атмосферу. Микроорганизмы, обитающие в почве, превращают накопившиеся в ней остатки в органический материал гумус. Естественными источниками СО2 также являются извержения вулканов и лесные пожары. Из-за недостатка воздуха или высокой кислотности часть углерода покидает цикл, переходит в ископаемое состояние в виде торфа, залежей каменного угля, нефти (каустобиолиты).

Каустобиолиты (от греч. кaustos - горючий, bios - жизнь, lithos - камень) – твердые горючие ископаемые органического происхождения, представляющие собой продукты преобразования остатков растительных и животных организмов под воздействием физико-химических, биологических и геологических факторов. Термин «каустобиолиты» предложен Г. Потонье в 1888 г.

Поглощение  СО2 происходит Мировым океаном, откуда часть СО2 покидает цикл в виде отложений известняка. Благодаря этому океан способен к дальнейшему поглощению СО2. При повышении температуры СО2 вновь способен выделяться из океана в атмосферу.

    Однако  в настоящее время человек  интенсивно замыкает на себя круговорот веществ, в том числе и углерода:

1. Суммарная  биомасса всех домашних животных  уже превышает биомассу всех диких наземных животных.

2. Площади культурных растений приближаются к площади естественных биогеоценозов, многие культурные растения экосистемы по своей продуктивности значительно превосходят природные.

3. Поступление  диоксида углерода в атмосферу  в результате сжигания энергоносителей ведет к глобальному нарушению теплового баланса, «парниковому эффекту». За последнее столетие содержание СО2 увеличилось на 10%, за 33 года содержание СО2 возросло на 25% от первоначальной величины. По прогнозам, к середине XXI века содержание СО2 в атмосфере удвоится.

    Круговорот  азота

    Для круговорота азота в элементарной наземной экосистеме характерны три основные «экологические проблемы»:

1) огромные  запасы атмосферного азота (N2) непосредственно не могут использоваться высшими растениями - высшие растения усваивают азот в нитратной (NО ) или аммонийной (NH ) форме;

2) неорганические  соединения азота обладают высокой  растворимостью, слабо удерживаются почвой и легко вымываются за пределы почвенного профиля;

3) материнские  (почвообразующие) породы практически  не содержат азота.

     Процессы и механизмы круговорота азота

Основу  круговорота азота в экосистеме составляют четыре типа процессов: азотфиксация, аммонификация, нитрификация и денитрификация.

1. Азотфиксация

Молекулярный  азот атмосферного воздуха (N2) может быть «зафиксирован», связан с другими химическими элементами и поступать в экосистему уже в доступной форме путем так называемой азотфиксации. Различают абиотическую и биотическую (биологическую) азотфиксацию.

Азотфиксация  биологическая - усвоение молекулярного азота воздуха (N2) азотфиксирующими бактериями с образованием соединений азота, доступных для использования другими организмами.

Азотфиксация  осуществляется как свободноживущими азотфиксирующими бактериями - азотобактером, цианобактериями и др. (несимбиотическая азотфиксация), так и симбиотическимы азотфиксаторами, живущими в симбиозе с высшими растениями (например, клубеньковыми бактериями). Происходит с участием фермента нитрогеназы, которая катализирует восстановление N2 до NH3 в присутствии АТФ (источника энергии) и восстановителя.

    Один  из характерных путей попадания  связанного азота в экосистему - так называемая абиотическая азотфиксация: при грозах воздух под действием электрических разрядов локально разогревается до огромной температуры (до 2000 °С), что приводит к расщеплению части молекул азота и кислорода на ионизированные атомы, которые могут реагировать друг с другом, образуя оксиды азота NOX. Взаимодействуя с водой, оксиды азота образуют соответствующие кислоты. Например NO2 образует азотную кислоту по схеме:

     Таким путем связанный в форме нитратов азот (вместе с атмосферными осадками) попадает в экосистему. Диссоциируя в воде, азотная кислота подкисляет атмосферные осадки, а нитратный ион из почвенных растворов и водоемов легко усваивается растениями при любой реакции среды.

2. Аммонификация

    Поглощенный из почвы (в нитратной и аммонийной форме) или полученный от симбиотрофов (в основном в аммонийной форме) минеральный азот, растения используют для синтеза аминокислот (белков), нуклеиновых кислот и других органических азотсодержащих соединений. Таким образом, азот из минеральной формы нахождения переходит в органическую. В составе органических соединений азот пребывает в фитомассе растений до ее отмирания и/или поедания животными-фитофагами, а также передается по пастбищной пищевой цепи экосистемы. В конечном итоге, все азотсодержащие органические соединения попадают в детритную пищевую цепь, где и происходит их разложение до минеральных форм, начинающееся с процессов так называемой аммонификации.

Аммонификация - разложение микроорганизмами азотсодержащих органических соединений (белков, мочевины, нуклеиновых кислот и др.) с образованием свободного аммиака:

3.  Нитрификация

Нитрификация - процесс биологического превращения восстановленных соединений азота в окисленные неорганические по схеме:

4. Денитрификация

Денитрификация - микробиологический процесс восстановления окисленных соединений азота (нитратов, нитритов) до газообразных азотистых продуктов (обычно до N2):

    Денитрификация  происходит в результате жизнедеятельности бактерий, факультативных анаэробов, использующих в отсутствие кислорода нитраты и нитриты в качестве окислителей (анаэробное дыхание). Процесс сопряжен с окислением органических веществ и катализируется особыми ферментами. В ходе денитрификации азот удаляется из почвы и воды в виде газообразного N2, поступающего в атмосферу.

Процесс денитрификации активно протекает во влажных, плохо аэрируемых или затопляемых почвах, эвтрофных водоемах, при рН 7-8, достаточном количестве нитратов и легкодоступного органического вещества. Денитрификацию считают главной причиной потерь азота в земледелии - удобрения могут утрачивать в результате денитрификации до 50% связанного азота. Хотя процессы денитрификации осуществляются микроорганизмами не с целью получения азота, но именно они «замыкают» круговорот азота в экосистеме, возвращая газообразный N2 в атмосферу.

      Круговорот  азота в настоящее время подвергается сильному воздействию со стороны человека. К  значительным изменениям в цикле азота приводят процессы:

- массовое  производство азотных удобрений и их использование приводит к избыточному накоплению нитратов; 

- подавление деятельности микроорганизмов в результате загрязнения почвы отходами промышленности приводит к снижению скорости превращения аммиака в нитраты;

- азот, поступающий на поля в виде  удобрений, теряется из-за отчуждения урожая, выщелачивания и денитрификации, происходит накопление аммонийных удобрений в почве;

- в результате  промышленной фиксации молекулярного  азота из атмосферы с целью  производства азотных удобрений  резко нарушается природное азотное равновесие.

    Однако  эти процессы носят локальный  характер. Гораздо большее значение имеет поступление оксидов азота в атмосферу при сжигании топлива на ТЭЦ, транспорте, заводах, особенно в промышленных районах. Под воздействием излучения в атмосфере происходят реакции углеводородов с оксидами азота с образованием высокотоксичных и канцерогенных соединений.

Информация о работе Понятие биогенной миграции