Классичесская наука

Автор работы: Пользователь скрыл имя, 27 Февраля 2016 в 00:10, реферат

Описание работы

Классическая стадия науки – аналитическая. Этот периодсвязывают в истории науки с формированием и систематическим развитием экспериментально–теоретических исследований, его часто именуют аналитическим или точным естествознанием. Накопление большого количества сведений о мире мореплавателями, путешественниками, астрономами, химиками и алхимиками к началу XVII столетия породило стремление к более детальному изучению объектов, что привело к дифференциации (разделению, расчленению) существующих наук. К примеру, в физике выделяются механика, оптика, физика сред (газов, жидкостей и т.д.)

Файлы: 1 файл

класическая наука.docx

— 23.55 Кб (Скачать файл)

Классическая стадия науки – аналитическая. Этот период связывают в истории науки с формированием и систематическим развитием экспериментально–теоретических исследований, его часто именуют аналитическим или точным естествознанием. Накопление большого количества сведений о мире мореплавателями, путешественниками, астрономами, химиками и алхимиками к началу XVII столетия породило стремление к более детальному изучению объектов, что привело к дифференциации (разделению, расчленению) существующих наук. К примеру, в физике выделяются механика, оптика, физика сред (газов, жидкостей и т.д.)

Это была эпоха, которая, по выражению Энгельса, породила титанов по силе мысли, страсти и характеру, по многосторонности и учености.

Этот этап характеризуется целым рядом специфических особенностей:

1)Стремление к завершенной  системе знаний, фиксирующей истину  в окончательном виде. Это связано  с ориентацией на классическую  механику, представляющую мир в  виде гигантского механизма, четко  функционирующего на основе вечных  и неизменных законов механики. Поэтому механика рассматривалась  и как универсальный метод  познания окружающих явлений, в  результате дававший систематизированное  истинное знание, и как эталон  всякой науки вообще. Следовательно, в классической науке господствовала  парадигма механицизма. Эта ориентация  на механику приводила к механистичности  и метафизичности.

2) Рассмотрение мира как из века в век неизменного, всегда тождественного самому себе, неразвивающегося целого. Данный методологический подход породил такие специфические для классического естествознания исследовательские установки, как статичность, элементаризм и антиэволюционизм. Усилия ученых были направлены в основном на выделение и определение простых элементов сложных структур (элементаризм) при сознательном игнорировании тех связей и отношений, которые присущи этим структурам как динамическим целостностям (статичность). Поэтому истолкование явлений реальности было в полной мере метафизическим, лишенным представлений об изменчивости, развитии, историчности (антиэволюционизм).

3) Сведение самой Жизни и вечно живого на положение ничтожной подробности Космоса, отказ от признания их качественной специфики в мире-механизме, четко функционирующем по законам открытым И.Ньютоном. В этом абсолютно предсказуемом мире (идею всеобщего и полного детерминизма наиболее точно высказал Лаплас: если бы было известно положение всех частей и элементов мира и силы, действующих на них, если бы нашелся некий демонический ум, объединивший эти данные в одной формуле, не осталось бы ничего непонятного в природе, было бы открыто не только прошлое, но и будущее) не было места жизни, организм понимался бы как механизм. Казалось, чем дальше шел ход человеческой мысли, тем резче и ярче выступал такой чуждый живому, человеческой личности и ее жизни, стихийно непонятный человеку Космос. Бренность и ничтожность жизни, ее случайность в Космосе, казалось, все более подтверждались успехами точного знания. Лишь одна религия продолжала отводить человеку особое место в мире.

4) Наука вытесняла религию в качестве интеллектуального авторитета. Человеческий разум и практическое преобразование природы как результат его деятельности полностью вытеснили теологическую доктрину и Священное Писание в качестве главных источников познания Вселенной. Вера и разум были окончательно разведены в разные стороны. Место религиозных воззрений занял рационализм, который считал человека высшей или окончательной, формой разума, дал жизнь светскому гуманизму и эмпиризму, который выдвинул концепцию материальности мира как важнейшей и единственной реальности, чем заложил основы научного материализма.

К середине 17 века многие монархи ощущали необходимость освобождения от Римской церкви и пытались заручится поддержкой различных слоев населения, пытаются найти альтернативе католической религиозной идеологии.

И под прямым покровительством монархов создаются академии:

1660 г.  – Лондонское  королевское общество

Представители: Бекон, Гук и др. Главная задача – увеличить власть человека над природой и освободить от рабства предрассудков.

Потом образовываются Парижская, Берлинская, Стокгольмская и наконец, Петербургская академии наук.

Создаются научные и учебные заведения – нового типа (лаборатории, институты, ВУЗы, кафедры, научные журналы);

Среди тех, кто непосредственно подготавливал рождение" науки, были Джордано Бруно, Леонардо да Винчи, Николя Коперника, Галилео Галилея, Иоганна Кеплера.

польский астроном Николай Коперник (1473-1543 гг.). В своем труде «Об обращениях небесных сфер» он утверждал, что Земля не является центром мироздания, она одна из планет, движущихся вокруг Солнца по круговым орбитам. Совершая обращение вокруг Солнца, Земля одновременно вращается и вокруг собственной оси, чем и объясняется смена дня и ночи, видимое вращение звездного неба. Включив Землю в число небесных тел, которым свойственно круговое движение, Коперник высказал очень важную мысль о движении как естественном свойстве небесных и земных объектов, подчиненном некоторым общим закономерностям единой механики. Тем самым было разрушено догматизированное представление Аристотеля о неподвижном «перводвигателе», якобы приводящем в движение Вселенную.

Учение Коперника подрывало опиравшуюся на идеи Аристотеля религиозную картину мира. Последняя исходила из признания центрального положения Земли, что давало основание объявлять находящегося на ней человека центром и высшей целью мироздания. Кроме того, религиозное учение о природе противопоставляло земную материю, объявляемую тленной, преходящей – небесной, которая считалась вечной и неизменной.

Существенным недостатком взглядов Коперника было то, что он разделял господствующее до него убеждение в конечности мироздания, поскольку полагал, что Вселенная где-то заканчивается твердой сферой, на которой закреплены неподвижные звезды.

Одним из активных сторонников учения Коперника был итальянский мыслитель Джордано Бруно (1548-1600). Он пошел дальше учения Коперника, отрицая наличие центра Вселенной вообще и отстаивая тезис о бесконечности Вселенной. Бруно говорил о существовании во Вселенной множества тел, подобным Солнцу и окружающим его планетам. Причем многие из бесконечного количества миров он считал обитаемыми разумными существами. А так как Вселенная бесконечна, то могут быть отменены и положения аристотелевской космогонии, в частности: вне мира нет ничего, Космос конечен. Отвергает Бруно и понятие абсолютного места (абсолютного верха и абсолютного низа), тем самым вводя идею относительности движения, столь необходимую для создания физики.

В учении Галилео Галилея (1564-1642) были заложены основы нового механического естествознания. До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем, согласно которому тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что такое представление, хотя и согласуется с нашим повседневным опытом, является ошибочным. Вместо него Галилей сформулировал совершенно иное представление, получившее впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия. (Галилей предположил, что, если допустить существование абсолютно горизонтальной поверхности, убрать трение, то движение тела будет продолжаться.)

Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилею принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов.

Росту научного авторитета Галилея способствовали его астрономические исследования. Используя построенные им телескопы, Галилей сделал целый ряд интересных открытий. Он установил, что Солнце вращается вокруг своей оси, а на его поверхности имеются пятна. У самой большой планеты Солнечной системы – Юпитера - он обнаружил 4 спутника (из 13 известных в настоящее время). Наблюдения за Луной показали, что ее поверхность пористого строения. Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд. Но главное в деятельности Галилея состояло в отстаивании учения Коперника, которое подвергалось нападкам не только со стороны церкви, но и со стороны некоторых ученых.

(Католическая  церковь приняла решение о  запрещении книги Коперника «Об  обращении небесных сфер», а его  учение было объявлено еретическим. Галилей в этом учении упомянут  не был, но ему все же пришлось  предстать перед судом инквизиции. После длительных допросов он  был вынужден отречься от учения  Коперника и принести публичное  покаяние. Только спустя 350 лет после  смерти Галилея, в 1992 году, он был  реабилитирован католической церковью, его осуждение было признано  ошибочным, а учение – правильным.)

 

Иоганом Кеплером (1571-1630). На основе обобщения многолетних наблюдений движения планеты Марс, сделанных датским астрономом Тихо Браге, Кеплер сформулировал три закона движения планет относительно Солнца. В своем первом законе он отказывается от коперниковского представления о круговом движении планет и доказывает, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Это открытие имело огромное значение для развития естествознания, оно свидетельствовало о том, что между движением земных и небесных тел нет непреодолимой пропасти, поскольку все они подчиняются объективным естественным законам. Но Кеплер не мог объяснить причины движения планет, поскольку динамика – учение о силах и их взаимодействии – была создана лишь позднее И.Ньютоном.

В такой ситуации большое впечатление на естествоиспытателей произвела «теория вихрей», выдвинутая Рене Декартом (1596-1650). Декарт полагал, что мировое пространство заполнено особым, легким, подвижным веществом, способным образовывать гигантские вихри. Вихревые потоки, окружая все небесные тела, увлекают их и приводят в движение. Но теория вихрей не могла объяснить движение планет по законам Кеплера, она была отвергнута дальнейшим развитием науки. Но Декарт обессмертил свое имя в другой области – в математике. Он создал аналитическую геометрию, ввел оси координат и алгебраические обозначения, сформулировал понятие переменной величины.

Первая научная революция завершилась созданием классической механики И. Ньютона (1643-1724). Опираясь на труды Галилея, Ньютон разработал строго научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Параллельно с Лейбницем и независимо от него Ньютон создал свой вариант дифференциального и интегрального исчисления для решения основных проблем механики. Благодаря этому Ньютон сформулировал три основных закона движения и закон всемирного тяготения.

(Первый закон механики Ньютона – это принцип инерции, сформулированный еще Галилеем. Существо второго закона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Третий закон механики Ньютона – это закон равенства действия и противодействия.

Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения. Этот закон является основой создания небесной механики – науки, изучающей движение тел Солнечной системы. В 1687 году вышел главный труд Ньютона «Математические начала натуральной философии».)

 Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед. Итогом первой глобальной научной революции, условно названной Ньютоновской, было создание механической картины мира на базе экспериментально-математического естествознания.

Претендуя на ведущее место в мировоззрении, наука, тем не менее, оставляла место религии и философии. Мировоззрение модернизированного общества оставляло человеку право выбора веры, убеждений и жизненного пути. Правда, чем больше практических результатов давала наука, тем более прочными становились ее позиции, тем шире распространялось убеждение, что только наука способна обеспечить лучшее будущее человечества.

  • Парадигма — это наиболее общая картина рационального устройства природы, мировоззрение;
  • Гумани́зм — демократическая, этическая жизненная позиция, утверждающая, что человеческие существа имеют право и обязанность определять смысл и форму своей жизни.
  • ДЕТЕРМИНИЗМ – общее учение о взаимосвязи и взаимообусловленности явлений и процессов реальности.
  • Эмпиризм —Философское направление, признающее чувственный опыт человека единственным источником познания.

Онтологическая основа классической науки:

  • антитеологизм;
  • однозначный детерминизм (о всеобщей причинности);
  • механизм (все явления рассматривались с позиций механики).

Гносеология классической науки:

  • объективные методы исследований;
  • эксперимент;
  • математическая модель;
  • дедуктивно-аксиоматический способ построения теорий.

Социальные основания классической науки:

  • дисциплинарная организация;
  • создание научных и учебных заведений – нового типа (лаборатории, институты, ВУЗы, кафедры, научные журналы);
  • востребованность науки обществом;
  • усиление связи науки с производством;
  • создание промышленного сектора науки;
  • возникновения массовой «большой» науки.

Информация о работе Классичесская наука