История развития нанонауки

Автор работы: Пользователь скрыл имя, 05 Июня 2017 в 01:28, реферат

Описание работы

Основными типами наноструктурированных материалов по размерности структурных элементов, из которых они состоят, являются нульмерные (0D), одномерные (1D), двумерные (2D) и трехмерные (3D) наноматериалы. К нульмерным наноматериалам относятся нанокластерные материалы и нанодисперсии, т. е. материалы, в которых наночастицы изолированы друг от друга. Одномерные наноматериалы — нановолоконные (нанопрутковые) и нанотубулярные материалы с длиной волокон (прутков, трубок) от 100 нм до десятков микрометров. К двумерным наноматериалам относятся пленки (покрытия) нанометровой толщины. Важной характеристикой объемных наноматериалов является однородность структуры и свойств в различных сечениях, даже если образцы имеют большие геометрические размеры.

Файлы: 1 файл

1.docx

— 75.62 Кб (Скачать файл)

Развитые страны мира очень активно включились в исследования по проблемам нанотехнологий на уровне правительств и глав государств, оценив, какие перспективы это может принести в будущем. В Японии действующая с 1999 года «Национальная программа работ по нанотехнологий» получила высший государственный приоритет «Огато». Проект спонсируется не только государством — в спонсорскую деятельность вовлечено около 60 частных фирм. Кроме данного проекта, в Японии финансируется около 10 проектов, посвященных различным аспектам нанотехнологий — квантовым волнам, флуктуациям в квантовых системах, а также направленных на исследование и разработку квантовых функциональных схем.

Развитие исследований в области наноматериалов и нанотехнологий наиболее активно поддерживается правительством США. Так, еще администрацией Билла Клинтона была предложена национальная программа исследований нанотехнологий с целью поддержки долгосрочных исследований и разработок, ведущих к значительным открытиям в области новых наноматериалов, наноэлектроники, медицины и здравоохранения, энергетики, химической промышленности, биотехнологий, сельского хозяйства, информационных тех¬нологий и национальной безопасности.

С 2001 года в США реализуется федеральная программа под названием National Nanotechnology Initiative. В бюджете США на данное направление было выделено 270 млн долларов, при этом коммерческими компаниями в него вложено в 10 раз больше средств. Программа предназначена для координации усилий 23 государственных организаций-участников в области развития нанонауки, наноинженерии и нанотехнологии. Данная программа была одобрена Конгрессом США в ноябре 2000 года, но уже в том же году реальное финансирование NNI значительно превысило запланированные расходы (422 млн долл.).

С 3 декабря 2003 года в США реализуется закон 21st Century Nanotechnology Research and Development Act («Об исследовании и развитии нанотехнологий в XXI веке»), направленный на укрепление лидерства в области экономики и техники путем обеспечения устойчивой долгосрочной поддержки исследований в данной сфере.

В соответствии с этим документом пять государственных организаций — Национальный научный фонд, Министерство энергетики, Национальный институт стандартов и технологий, Национальное аэрокосмическое агентство (NASA), Управление по охране окружающей среды — для проведения научно-исследовательских и опытно-конструкторских работ в области нанотехнологий получили от государства финансирование в размере 3,7 млрд. долларов сроком на четыре года. В эту сумму не вошли инвестиции, вкладываемые Министерством обороны США,  Министерством национальной безопасности и Национальным институтом здравоохранения.

В Европе более чем в 40 лабораториях проводятся нанотехнологические исследования и разработки, финансируемые как по государственным, так и по международным программам (в частности, по программе НАТО по нанотехнологий). Правительства и частный сектор все больше осознают нанонауку как источник новых технологий и процветания. Поэтому в сфере наноматериалов накопились огромные фонды от частных предприятий и правительств.

Для координации процесса становления и развития нанотехнологий в 2002 году в Европе создана некоммерческая организация «Европейская ассоциация нанобизнеса» (ENA), основная цель которой — содействие развитию сильной и конкурентоспособной европейской промышленности, базирующейся на использовании нанотехнологий. Главная миссия ENA заключается в обеспечении профессионального развития зарождающегося нанобизнеса в ЕС. Государственная поддержка нанотехнологий в европейских странах, по данным за 2004 год, составила около 1,3 млрд долларов.

По данным консалтинговой компании Lux Research, в 2003 году общемировые суммарные расходы государственных структур и частных компаний на нанотехнологий достигли 6 млрд. долларов, из них 2 млрд составляло государственное финансирование. В 2004 году эти расходы выросли до 8,6 и 4,0 млрд долларов соответственно. При этом рынок нанотехнологий к 2005 году достиг 225 млрд долларов (данные Nanobusiness Alliance и Business Communications Co.). Большая часть из них (около 10%) в настоящее время приходится на сферу энергетики и нефтепереработки.

В целом, если к началу 2001 года рынок наноматериалов составлял 555 млн долларов, то в 2005 году он уже превысил 900 млн долларов и в настоящее время продолжает стремительно расти.

В 2004 году С. Деккер соединил углеродную трубку с ДНК, впервые получив единый наномеханизм и открыв дорогу развитию бионанотехнологиям.

Рассматривая наиболее весомые достижения российских ученых в области практической нанотехнологии, следует отметить награждение в 2000 году Жореса Ивановича Алферова и его американских коллег Герберта Кремера и Джека Килби Нобелевской премией в области физики за создание полупроводниковых гетероструктур и интегральных схем. Известная в настоящее время светодиодная техника как раз базируется на так называемых гетероструктурах.

В России фундаментальные научно-исследовательские работы по нанотехнологии проводятся по нескольким программам. Наиболее крупные из них — «Физика наноструктур» под руководством академика Российской академии наук (РАН) Ж. И. Алферова и «Перспективные технологии и устройства в микро- и наноэлектронике» под руководством академика РАН Камиля Ахметовича Валиева.

В Физико-техническом институте им. А. Ф. Иоффе под руководством Ж. И. Алферова осуществляются разработки наногетероструктур, получившие международное признание. Ежегодно проводится международная конференция «Наноструктуры: физика и технологии». Значительные результаты нанотехнологических исследований достигнуты в Институте проблем технологии и макроэлектроники РАН под руководством члена-корреспондента РАН Виталия Васильевича Аристова, а также в Физическом институте имени П. Н. Лебедева РАН под руководством члена-корреспондента РАН Юрия Васильевича Копаева.

Фундаментальные исследования в области химических технологий позволили получить нанокристаллические (НК) и сверхмикрокристаллические (СМК) материалы, обладающие комплексом особых физико-химических и механических свойств. Они могут успешно использоваться в экстремальных условиях эксплуатации: при низких температурах, в зоне интенсивного радиационного излучения, в высоконагруженных конструкциях и агрессивных средах. На основе НК- и СМК-структур можно создавать металлические и интерметаллические материалы с высокими демпфирующими свойствами, высокопрочные и сверхлегкие металлополимерные композиты для применения в постоянных магнитах, высоковольтных контактах, катализаторах и фильтрующих элементах, а также в медицине для изготовления сверхпрочных, сверхлегких, коррозионностойких костных имплантатов.

Для развития и координирования работ в данной области в 2007 году было создано новое подразделение в Российской академии наук — Отделение нанотехнологии и информационных технологий. Академиком-секретарем отделения стал член президиума РАН, академик Евгений Павлович Велихов, а его заместителем — академик РАН Ж. И. Алферов.

Постановлением Правительства РФ от 2 августа 2007 г. № 498 утверждена Федеральная целевая программа «Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008—2010 годы». Цель данной программы — создание в России современной инфраструктуры национальной нанотехнологической сети для развития и реализации потенциала отечественной наноиндустрии.

В стране накоплена обширная научная база по нанотехнологиям. Однако ученые признают, что без поддержки государства и частных инвесторов они не могут самостоятельно развивать исследования и внедрять результаты в производство.

История развития технологий ИПД для получения наноматериалов

Более 30 лет прошло с тех пор, как профессор Гляйтер из Германии представил первые концепции разработки НС материалов (т.е. ультрамелкозернистых (УМЗ) материалов с размером зерен ≤100 нм), обладающих особыми свойствами [1]. В те годы аналогичные исследования выполнялись в СССР И.Д. Мороховым с сотрудниками [2]. С тех пор получение НС материалов и исследования их свойств получили бурное развитие благодаря большому интересу к этой научно и технически важной теме. Первоначальная идея Гляйтера состояла в том, что ввиду очень малого размера зерен НС материалы содержат чрезвычайно большую долю границ зерен с особой атомной структурой. Предполагалось, что в результате этих особенностей строения наноматериалы должны обладать необычными свойствами [3]. В частности ожидалось, что такие материалы должны демонстрировать очень высокую твердость, прочность, ударную вязкость, усталостную стойкость и износостойкость. Казалось, что наноструктурирование может привести к революционному использованию наноматериалов во многих функциональных и конструкционных изделиях. Однако эти интересные перспективы были поставлены под сомнение. Многочисленные исследования [4—5] показали, что хотя НС материалы действительно демонстрировали высокую прочность и твердость, они обычно были хрупкими и имели очень низкую пластичность, что создавало непреодолимые препятствия для их использования в изделиях. Говоря о причинах низкой пластичности наноматериалов, многие исследователи указывают на недостатки их получения, основанного на компактировании нанопорошков, проводимого с использованием различных методов [5, 6]. Как правило, наноматериалы, полученные компактированием, имеют остаточную пористость, загрязнения и небольшие геометрические размеры — все это и приводит к снижению их пластичности. Другая возможная причина имеет фундаментальную природу и состоит в том, что механизм пластической деформации, связанный с генерацией и движением дислокаций, может не действовать в зернах нанометрического размера. В этой связи, недавние открытия необычайно высокой прочности и пластичности сразу в нескольких объемных НС металлах представляют особый интерес [7—10]. Однако различные наноматериалы обладают специфичными микроструктурными особенностями, тесно связанными с методами и режимами их обработки. Как уже отмечалось выше, в ранних исследованиях

НС материалы получали методом компактирования нанопорошков, изготовленных с помощью конденсации в среде инертного газа [1—3, 11]. Данный метод позволяет получать заготовки с ультрамелким зерном с размеромт до 10 нм. Однако этот метод имеет известные ограничения — небольшие геометрические размеры образца (диаметром до 10 мм и толщиной до 1 мм) и значительную остаточную пористость. Высокая остаточная пористость и загрязнения — это недостатки, присущие также образцам, полученным консолидацией нанопорошков, изготовленных шаровым размолом или механическим легированием [6]. В последние годы наметился все возрастающий интерес к новому подходу в получении объемных наноструктурных металлов и сплавов, который является альтернативой компактированию. Этот подход основан на измельчении зерен до наноразмеров [12] в объемных заготовках с использованием интенсивной пластической деформации (ИПД), т.е. деформирования в условиях высоких приложенных давлений [13]. Заготовки из материалов, обработанные методами ИПД, обладают 100%-ной плотностью, а их большие геометрические размеры позволяют проводить тщательные исследования механических и физических свойств. В связи с этим получение объемных заготовок с ультрамелкозернистым (УМЗ) строением из различных металлов и сплавов с помощью методов ИПД становится одним из наиболее активно развивающихся направлений в области наноматериалов [14,15]. С тех пор как были проведены пионерские работы [16,17] по получению УМЗ структур путем обработки ИПД, два метода, позволяющие ее осуществить, привлекли к себе особое внимание, и в последнее время получили дальнейшее развитие. К этим методам относятся: интенсивная пластическая деформация кручением под высоким давлением и равноканальное угловое прессование.

 

Всесторонняя изотермическая ковка

 

Свободная ковка представляет собой процесс пластической деформации до определенной температуры металла, происходящей под давлением пресса. В результате металл неограниченно течет во все стороны в пространстве между бойками и принимает форму заданной поковки. В большинстве случаев поковка служит заготовкой для дальнейшей механической обработки. Ковка не только изменяет форму и размеры обрабатываемого металла, но и способствует улучшению его структуры и механических свойств, измельчает и уплотняет зерна, уменьшает пористость материала.

Метод включает многократное повторение определенной последовательности простых операций свободной ковки - осадки и протяжки, что не требует сложного дорогостоящего инструментария и позволяет использовать существующее технологическое и прессовое оборудование.

Данный метод позволяет:

1 получать объемные заготовки с однородной ультрамелкозернистой структурой (вплоть до d~10-100 нм), размер которых принципиально ограничивается только мощностью используемого оборудования;

2 вести обработку материала в широком диапазоне температур (Т=20-950°С) в изотермических условиях за счет использования индукционно-нагреваемых плоских бойков из жаропрочного никелевого сплава, что дает возможность за счет комбинирования схем осадка-протяжка достигать однородной деформации и соответственно однородной ультрамелкозернистой структуры во всем объеме заготовки.

 

1.2 Кручение под высоким давлением

 

При деформации кручением под высоким давлением исходные и полученные образцы имеют форму дисков. При этом образец помещается между бойками и сжимается под приложенным давлением Р в несколько ГПа. Нижний боек вращается, силы поверхностного трения заставляют образец деформироваться сдвигом. Геометрическая форма образцов такова, что основной объем материала деформируется в условиях гидростатического сжатия под действием приложенного давления и давления со стороны внешних слоев образца. В результате, несмотря на большие степени пластической деформации, образец не разрушается [1].

 

Для расчета истинной логарифмической степени деформации e используют формулу

, (1)

где   - угол вращения в радианах; r, h – радиус и толщина диска соответственно [37].

Данная формула аналогична соотношению, используемому при расчетах истинной степени деформации образцов, подвергнутых растяжению. Однако если в случае растяжения эта формула имеет физическое обоснование, то оно отсутствует в случае кручения. Согласно этому соотношению, при кручении под давлением после одного оборота логарифмическая степень деформации по периметру типичных образцов диаметром 20 мм и толщиной 1 мм составляет 4.1, а по периметру образцов диаметром 10 мм и толщиной 0.2 мм – 5.7, в то же время в центре этих образцов она равна нулю. Как показывают результаты многочисленных экспериментов, в ходе реализации данной схемы ИПД в центральной части образцов после нескольких оборотов структура также измельчается и является обычно однородной по радиусу образцов. Это подтверждается и результатами обнаружения близких значений микротвердости в различных точках, как в центре, так и на периферии деформированных образцов [1]. При расчете степени сдвиговой деформации ec в данном методе часто также используют формулу, применяемую в случае обычного деформирования кручением для расчета степени сдвиговой деформации на расстоянии R от оси образца в форме диска:

, (2)

Информация о работе История развития нанонауки