Философская теология. Наука и Бог

Автор работы: Пользователь скрыл имя, 13 Ноября 2009 в 17:19, Не определен

Описание работы

Введение
Библейская теория
История развития научной теории
Суть процесса инфляции
Научная теория
Возможные сценарии развития нашего мира
Формирование звезд
Возникновения планет
Заключение
Список литературы

Файлы: 1 файл

Реферат Наука и бог.docx

— 59.80 Кб (Скачать файл)

   Масса является одной из важных характеристик  звезд. Любопытно отметить, что довольно распространены двойные звезды – образующиеся вблизи друг друга и вращающиеся вокруг общего центра. Их насчитывается от 30 до 50 процентов от общего числа звезд. Возникновение двойных, вероятно, связано с распределением момента количества движения исходного облака. Если у такой пары образуется планетная система, то движение планет может быть довольно замысловатым, а условия на их поверхностях будут сильно изменяться в зависимости от расположения планеты на орбите по отношению к светилам. Весьма возможно, что стационарных орбит, вроде тех, что могут существовать в планетных системах одинарных звезд (и существуют в Солнечной системе), не окажется совсем. Обычные, одинарные звезды в процессе своего образования начинают вращаться вокруг своей оси.

   Другой  важной характеристикой является радиус звезды. Существуют звезды – белые карлики, радиус которых не превышает радиуса Земли, существуют и такие – красные гиганты, радиус которых достигает радиуса орбиты Марса. Химический состав звезд по спектроскопическим данным в среднем такой: на 10000 атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 атом углерода, остальных элементов еще меньше. Из-за высоких температур атомы ионизируются, так что вещество звезды является в основном водородно-гелиевой плазмой – в целом электрически нейтральной смесью ионов и электронов. В зависимости от массы и химического состава исходного облака образовавшаяся звезда попадает на тот или иной участок, так называемой главной последовательности на диаграмме Герцшпрунга-Рессела. Последняя представляет собой координатную плоскость, на вертикальной оси которой откладывается светимость звезды (т.е. количество энергии, излучаемой ей в единицу времени), а на горизонтальной – ее спектральный класс (характеризующий цвет звезды, который в свою очередь зависит от температуры ее поверхности). При этом «синие» звезды более горячие, чем «красные», а наше «желтое» Солнце имеет промежуточную температуру поверхности порядка 6000 градусов. Традиционно спектральные классы от горячих к холодным обозначаются буквами O,B,A,F,G,K,M , при этом каждый класс делится на десять подклассов. Так, наше Солнце имеет спектральный класс G2. По мере «выгорания» водорода в центре звезды ее масса немного меняется и звезда немного смещается вправо вдоль главной последовательности. Звезды с массами порядка солнечной находятся на главной последовательности 10-15 млрд. лет (наше Солнце находится на ней уже около 4,5 млрд. лет). Постепенно энергии в центре звезды выделяется все меньше, давление падает, ядро сжимается, и температура в нем возрастает. Ядерные реакции протекают теперь только в тонком слое на границе ядра внутри звезды. В результате звезда в целом начинает «разбухать», а ее светимость увеличиваться. Звезда сходит с главной последовательности и перебирается в правый верхний угол диаграммы Герцшпрунга-Рессела, превращаясь в так называемый «красный гигант». После того, как температура сжимающегося (теперь уже гелиевого) ядра красного гиганта достигнет 100-150 млн. градусов, начинается новая ядерная реакция синтеза – превращение гелия в углерод. Когда и эта реакция исчерпает себя, происходит сброс оболочки – существенная часть массы звезды превращается в планетарную туманность. Горячие внутренние слои звезды оказываются «снаружи», и их излучение «раздувает» отделившуюся оболочку. Через несколько десятков тысяч лет оболочка рассеивается, и остается небольшая очень горячая плотная звезда. Медленно остывая, она переходит в левый нижний угол диаграммы и превращается в «белый карлик». Белые карлики, по-видимому, представляют собой заключительный этап нормальной эволюции большинства звезд.

   Но  встречаются и аномалии. Некоторые  звезды время от времени вспыхивают, превращаясь в новые звезды. При  этом они каждый раз теряют порядка  сотой доли процента своей массы. Из хорошо известных звезд можно  упомянуть новую в созвездии  Лебедя, вспыхнувшую в августе 1975 года и пробывшую на небосводе  несколько лет. Но иногда случаются  и вспышки сверхновых – катастрофические события, ведущие к полному разрушению звезды, при которых за короткое время излучается энергии больше, чем от миллиардов звезд той галактики, к которой принадлежит сверхновая. Такое событие зафиксировано в китайских хрониках 1054 года: на небосводе появилась такая яркая звезда, что ее можно было видеть даже днем. Результат этого события известен нам теперь как Крабовидная туманность, «медленное» распространение которой по небу мы наблюдаем в последние 300 лет. Скорость разлета ее газов в результате взрыва составляет порядка 1500 м/с, но она находится очень далеко. Сопоставляя скорость разлета с видимым размером Крабовидной туманности, мы можем рассчитать время, когда она была точечным объектом, и найти его место на небосклоне – эти время и место соответствуют времени и месту появления звезды, упомянутой в хрониках.

   Если  масса звезды, оставшейся после сброса оболочки «красным гигантом» превосходит солнечную в 1,2-2,5 раза, то, как показывают расчеты, устойчивый «белый карлик» образоваться не может. Звезда начинает сжиматься, и ее радиус достигает ничтожных размеров в 10 км, а плотность вещества такой звезды превышает плотность атомного ядра. Предполагается, что такая звезда состоит из плотно упакованных нейтронов, поэтому она так и называется – нейтронная звезда. Согласно этой теоретической модели у нейтронной звезды имеется сильное магнитное поле, а сама она вращается с огромной скоростью – несколько десятков или сотен оборотов в секунду. И только обнаруженные (именно в Крабовидной туманности) в 1967 году пульсары – точечные источники импульсного радиоизлучения высокой стабильности – обладают как раз такими свойствами, каких следовало ожидать от нейтронных звезд. Наблюдаемое явление подтвердило концепцию.

   Если  же оставшаяся масса еще больше, то гравитационное сжатие неудержимо сжимает вещество и дальше. Вступает в действие одно из предсказаний общей  теории относительности, согласно которому вещество сожмется в точку. Это явление  называется гравитационным коллапсом, а его результат – «черной дырой». Это название связано с тем, что гравитационная масса такого объекта настолько велика, силы притяжения настолько значительны, что не только какое-либо вещественное тело не может покинуть окрестность черной дыры, но даже свет – электромагнитный сигнал – не может ни отразиться, ни выйти «наружу». Таким образом, непосредственно наблюдать черную дыру невозможно, можно лишь догадаться о ее существовании по косвенным эффектам. Двигаясь в пространстве по направлению к черной дыре (о которой мы пока ничего не знаем), можно обнаружить, что рисунок созвездий, расположенных прямо по курсу начинает меняться. Это связано с тем, что свет, идущий от звезд и проходящий неподалеку от черной дыры, отклоняется ее тяготением. По мере приближения к дыре возникнет пустая область, окруженная светящимися точками-звездами, в том числе и такими, которых раньше не наблюдалось. Свет от некоторых звезд может, проходя мимо дыры, поворачивать вокруг нее, а затем попадать в приемные устройства наблюдателя. Таким образом, одна звезда может давать несколько изображений в разных местах. Все это, конечно, противоречит как нашему жизненному опыту, так и классическим представлениям, согласно которым свет распространяется прямолинейно. Однако в пользу существования черных дыр говорит целый ряд косвенных астрономических наблюдений, а отклонение света под действием гравитационного притяжения регистрируется уже при прохождении луча мимо такого «нормального» объекта, как Солнце. 

   Возникновения планет

   Движение  планет в Солнечной системе упорядоченное: они вращаются вокруг Солнца в одном направлении и почти в одной плоскости. Расстояния от одной планеты до другой возрастают закономерно. Орбиты планет близки к окружностям, что и позволяет им вращаться вокруг Солнца миллиарды лет, не сталкиваясь друг с другом.

   Если  движение планет подчиняется одному и тому же порядку, то и процесс  их образования должен быть единым. Это показали в XVIII в. Иммануил Кант и Пьер Лаплас. Они пришли к выводу, что на месте планет вокруг Солнца первоначально вращалась туманность из газа и пыли.

   Но  откуда взялась эта туманность? И  каким образом газ и пыль превратились в крупные планетные тела? Эти  вопросы оставались нерешёнными  в космогонии XIX и начала XX в. Камнем преткновения была и проблема момента  количества движения планет. Масса  всех планет системы в 750 раз меньше массы Солнца. При этом на долю Солнца приходится лишь 2% общего момента количества движения, а остальные 98% заключены  в орбитальном вращении планет.

   Вплотную  этими проблемами наука занялась лишь во второй половине XX в. Почти до конца 80-х гг. раннюю историю нашей  планетной системы приходилось  «воссоздавать» лишь на основе данных о ней самой. И только к 90-м гг. стали доступны для наблюдений невидимые ранее объекты – газопылевые диски, вращающиеся вокруг некоторых молодых звёзд, сходных с Солнцем.

   Газопылевую туманность, в которой возникли планеты, их спутники, мелкие твёрдые тела – метеориты, астероиды и кометы, называют протопланетным (или допланетным) облаком. Планеты вращаются вокруг Солнца почти в одной плоскости, а значит, и само газопылевое облако имело уплощённую, чечевицеобразную форму, поэтому его называют ещё диском. Учёные полагают, что и Солнце, и диск образовались из одной и той же вращающейся массы межзвёздного газа – протосолнечной туманности.

   Начальная фаза протосолнечной туманности – предмет исследования астрофизики и звёздной космогонии. Изучение же её эволюции, приведшей к появлению планет, - центральная задача космогонии планетной.

   Возраст Солнца насчитывает чуть меньше 5 млрд. лет. Возраст древнейших метеоритов почти такой же: 4,5-4,6 млрд. лет. Столь  же стары и рано затвердевшие части  лунной коры. Поэтому принято считать, что Земля и другие планеты  сформировались 4,6 млрд. лет назад. Солнце относится к звёздам так называемого  второго поколения Галактики. Самые  старые её звёзды значительно (на 8-10 млрд. лет) старше Солнечной системы. В  Галактике есть и молодые звёзды, которым всего 100 тыс. – 100 млн лет (для звезды это совсем юный возраст). Многие из них похожи на Солнце, и по ним можно судить о начальном состоянии нашей системы. Наблюдая несколько десятков подобных объектов, учёные пришли к следующим выводам.

   Размер  допланетного облака Солнечной системы  должен был превышать радиус орбиты последней планеты – Плутона. Химический состав молодого Солнца и окружавшего его газопылевого облака-диска, по-видимому, был одинаков. Общее содержание водорода и гелия достигало в нём 98%. На долю всех остальных, более тяжёлых элементов приходилось лишь 2%; среди них преобладали летучие соединения, включающие углерод, азот и кислород: метан, аммиак, вода, углекислота. Другими методами и в других отраслях знания.

   Расчёты показывают, что в пределах орбиты Плутона, т. Е. диска радиусом 40 а. е., общая масса всех планет вместе с утерянными к настоящему времени летучими веществами должна была составлять 3-5% от массы Солнца. Такую модель облака называют облаком умеренно малой массы, она подтверждается и наблюдениями околозвёздных дисков.

   Если  бы масса облака была сопоставима  с массой центрального тела, то должна была бы образоваться звезда – компаньон Солнца (или же надо найти объяснение выбросу огромных излишков вещества из Солнечной системы).

   Наименее  изучена самая ранняя стадия – выделение протосолнечной туманности из гигантского родительского молекулярного облака, принадлежащего Галактике. В 40-х гг. академик Отто Юльевич Шмидт выдвинул ставшую общепринятой гипотезу об образовании Земли и других планет из холодных твёрдых допланетных тел – планетезымалей. Распространённая ранее точка зрения, что планеты»- это небольшие остатки некогда раскалённых гигантских газовых сгустков солнечного состава, потерявших летучие вещества, пришла в противоречие с науками о Земле.

   Земля, как показывают исследования, никогда  не проходила через огненно-жидкое, т. Е. полностью расплавленное состояние. Исследуя шаг за шагом эволюцию допланетного диска, учёные получили последовательность основных этапов развития газопылевого диска, окружавшего Солнце, в систему планет.

   Первоначальный  размер облака превышал современный  размер планетной системы, а его  состав соответствовал тому, который  наблюдается в межзвёздных туманностях: 99% газа и 1% пылевых частиц размерами  от долей микрометра до сотен микрометров. Во время коллапса, т. Е. падения газа с пылью на центральное ядро (будущее Солнце), вещество сильно разогревалось, и межзвёздная пыль могла частично или полностью испариться. Таким образом, на первой стадии облако состояло почти целиком из газа, притом хорошо перемешанного благодаря высокой турбулентности – разнонаправленному, хаотичному движению частиц.

   По  мере формирования диска турбулентность стихает. Это занимает немного времени  – около 1000 лет. При этом газ охлаждается и в нём вновь образуются твёрдые пылевые частицы. Таков первый этап эволюции диска.

   Для остывающего допланетного облака характерно очень низкое давление – менее десятитысячной доли атмосферы. При таком давлении вещество из газа конденсируется непосредственно в твёрдые частички, минуя жидкую фазу. Первыми конденсируются самые тугоплавкие соединения кальция, магния, алюминия и титана, затем магниевые силикаты, железо и никель. После этого в газовой среде остаются лишь сера, свободный кислород, азот, водород, все инертные газы и некоторые летучие элементы.

   В процессе конденсации становятся активными  пары воды, окисляющие железо и образующие гидраризованные соединения. Основные же космические элементы – водород и гелий – остаются в газообразной форме. Для их конденсации потребовались бы температуры, близкие к абсолютному нулю, ни при каких условиях недостижимые в облаке.

   Химический  состав пылинок в допланетном  диске определялся температурой, которая падала по мере удаления от Солнца. К сожалению, рассчитать изменение  температуры в допланетном облаке очень трудно. Химический состав планет земной группы показывает, что они  состоят в основном из веществ, конденсировавшихся при высоких температурах. В составе  ближней части пояса астероидов преобладают каменистые тела. По мере удаления от Солнца в поясе астероидов увеличивается число тел, которые  содержат обогащённые водой минералы и некоторые летучие вещества. Их удалось обнаружить в метеоритах, являющихся осколками астероидов. Среди  малых планет, по-видимому, нет или  очень немного ледяных тел. Следовательно, граница конденсации водяного льда должна была проходить за ними, не ближе внешнего края пояса астероидов – в три с лишним раза дальше от Солнца, чем Земля.

   В то же время крупнейшие спутники Юпитера  – Ганимед и Каллисто – наполовину состоят из воды. Они находятся на гораздо большем расстоянии от Солнца, чем пояс астероидов. Значит, водяной лёд конденсировался во всей зоне образования Юпитера. Начиная с орбиты Юпитера и дальше в допланетном облаке должны были преобладать ледяные пылинки с вкраплениями более тугоплавких веществ. В области внешних планет, при ещё более низкой температуре, в составе пылинок оказались льды метана, аммиака, твёрдая углекислота и другие замёрзшие летучие соединения. Подобный состав в настоящее время имеют кометные ядра, залетающие в окрестности Земли с далёкой периферии Солнечной системы.

Информация о работе Философская теология. Наука и Бог