Звезды и их эволюция

Автор работы: Пользователь скрыл имя, 28 Марта 2015 в 21:48, реферат

Описание работы

Что такое звезды? Поверхностный взгляд найдет сходство между звездами и планетами. Ведь и планеты при наблюдении простым глазом видны как светящиеся точки различной яркости. Однако уже за несколько тысячелетий до нас внимательные наблюдатели неба – пастухи и земледельцы, мореплаватели и участники караванных переходов – приходили к убеждению, что звезды и планеты – различные по своей природе явления.

Содержание работы

Введение ……………………….…………………………………………………

Общая характеристика звезд……………………………………………...
Звезда – плазменный шар………………………………………………
Межзвездная среда ………………………………………………………...
Понятие звездной эволюции…………………………………………..…..
Процесс звездообразования ………………………………………………
Звезда как динамическая саморегулирующаяся система……………....
Заключние……..….………….….……….……….……….….…………………

Список сокращений ……..….………….….…….….……….….

Файлы: 1 файл

еремеева.docx

— 39.04 Кб (Скачать файл)

 

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Петрозаводский государственный университет»

Кольский филиал

 

 

 

 

 

 

 

Кафедра североведения

 

Дисциплина “Концепции современного естествознания”

 

 

Звезды и их эволюция

 

 

 

Реферат (контрольная работа)

студента 2 курса (гр.3)

заочного отделения

экономического факультета

направление 080100.62 Экономика

 

Еремеевой Татьяны Владиславовны

 

Преподаватель -

к.и.н, доцент Сидоров Н.И.

 

 

 

 

 

 

 

 

 

 

Апатиты

2015

Содержание

 

Введение ……………………….…………………………………………………

 

Общая характеристика звезд……………………………………………...

Звезда – плазменный шар………………………………………………

Межзвездная среда ………………………………………………………...

Понятие звездной эволюции…………………………………………..…..

Процесс звездообразования ………………………………………………

Звезда как динамическая саморегулирующаяся система……………....

Заключние……..….………….….……….……….……….….…………………

 

Список сокращений ……..….………….….…….….……….….…….….………

 

Список использованных источников …..….…………..…..…….….……….…. 
Приложение

 

 

 

 

Введение

 

Что такое звезды? Поверхностный взгляд найдет сходство между звездами и планетами. Ведь и планеты при наблюдении простым глазом видны как светящиеся точки различной яркости. Однако уже за несколько тысячелетий до нас внимательные наблюдатели неба – пастухи и земледельцы, мореплаватели и участники караванных переходов – приходили к убеждению, что звезды и планеты – различные по своей природе явления. Планеты, так же как Луна и Солнце, изменяют свое положение на небе, перемещаются из одного созвездия в другое и за год успевают пройти значительный путь, а звезды неподвижны одна относительно другой. Даже глубокие старики видят очертания созвездий совершенно такими же, какими они их видели в детстве.

Звезды не могут принадлежать к Солнечной системе. Если бы они были примерно на таком же расстоянии, как и планеты, то невозможно было бы найти объяснение их видимой неподвижности. Естественно считать, что звезды тоже движутся в пространстве, но они далеки от нас, что видимое перемещение их ничтожно. Создается иллюзия неподвижности звезд. Но если звезды так далеки, то при видимой яркости , сравнимой с видимой яркостью планет, они должны изучать во много раз мощнее, чем планеты. Такой ход рассуждений приводил к мысли, что звезды – это тела, по своей природе сходные с Солнцем. Эту мысль отстаивал Джордано Бруно. Но окончательно вопрос разрешился после двух открытий. Первое сделал Галлей в 1718 г. Он сравнил наблюдаемые им положение ярких звезд с положением этих же звезд, определяемыми древнегреческими астрономами. Оказалось, что за прошедшие 2000 лет Сириус сместился приблизительно на полградуса, а Арктур – на целый градус. Хотя древнегреческие астрономы определяли положение звезд не очень точно, смещения оказались слишком большими, чтобы их можно было отнести за счет ошибок наблюдателей, и Галлей пришел к выводу, что он обнаружил действительные перемещения звезд на небесной сфере. Естественнее было считать, что перемещения в течение 2 тысяч лет происходили равномерно, тогда получается, что за 1 год Сириус смещается приблизительно на 1 секунду дуги (1), а Арктур приблизительно на 2 секунды дуги. Это очень медленное перемещение и неудивительно, что его трудно было обнаружить.

Теперь уместно провести следующее рассуждение: Земля за год совершает полный оборот по орбите вокруг Солнца, в результате чего мы наблюдаем видимое движение Солнца по небесной сфере, которое составляет 360 в год. Если предположить, что Сириус движется в пространстве поперек луча зрения, примерно с такой же скоростью, с которой Земля движется вокруг Солнца, то из этого должно следовать, что Сириус находится во столько же раз дальше Солнце, во сколько раз 360 меньше 1, т.е. приблизительно в миллион раз. Но если увеличить расстояние до Солнца в миллион раз, то его блеск станет даже меньше блеска Сириуса. Значит, нужно полагать, что Сириус излучает в пространство не меньше, а скорее несколько больше световой энергии, чем Солнце. Это очень важный аргумент, подтверждающий общность природы звезд и Солнца. Еще более сильным оказывается другой аргумент. В 1824 г. Фраунгофер произвел первые наблюдения спектров звезд. В 1864 г. Секи, проделав подробные исследования спектров звезд, пришел к выводу, что звезды, как и Солнце, состоит из газа, имеющего высокую температуру, а также, что спектры всех звезд могут быть распределены на несколько классов и спектр Солнца принадлежит одному из этих классов. Из этого следует, что свет звезд имеет ту же природу, что и свет Солнца.

Таким образом, Солнце – одна из звезд. Это очень близкая к нам звезда, с которой Земля физически связана, вокруг которой она движется. Но звезд огромное множество, они имеют различный блеск, различный цвет, они излучают огромное количество энергии в пространство и поэтому теряя эту энергию, не могут не изменяться: они должны проходить какой-то путь эволюции.

 

 

 

Общая характеристика звезд

 

Звезды – это огромные раскаленные солнца, но столь удаленные от нас по сравнению с планетами Солнечной системы, что, хотя, они сияют в миллионы раз ярче, их свет кажется нам относительно тусклым.

В ночном небе невооруженным глазом можно видеть около 6000 звезд. Различны размеры звезд, их строение, химический состав, масса, температура, светимость и др. Самые большие звезды (сверхгиганты) превосходят размер солнца в сотни и тысячи раз. Звезды-карлики имеют размеры Земли и меньше (около 10 км). Предельная максимальная масса звезд равна примерно 60 солнечным массам, а минимальная примерно 0,03 солнечной массы. Весьма различны и расстояния до звезд. Свет звезд некоторых далеких звездных систем идет до нас сотни миллионов световых лет. Самая близкая к нам звезда – Проксима Центавра – маленькая звезда, ее масса в 7 раз меньше, чем масса нашего солнца, а поверхностная температура (3000°) в два раза меньше, чем температура на поверхности Солнца.

 

Из чего состоят звезды?

Лет 20 назад межзвездную среду представляли в виде горячего газа (с температурой Т = 104 K), в котором плавают холодные облака (Т = 102 К). Эта двухкомпонентная модель позволила объяснить многие явления, но к середине 70-х годов под напором новых фактов ее пришлось уточнить: внеатмосферные ультрафиолетовые наблюдения указали на существование очень горячего газа (Т = 106 К), заполняющего большую часть объема Галактики, а наземные радионаблюдения открыли нам очень холодный молекулярный газ (Т = 10 К), собранный в массивные облака вблизи галактической плоскости.

Теперь принято представлять межзвездный газ как четырехфазную среду (таблица), хотя и такая модель не исчерпывает всего многообразия физических условий в межзвездном пространстве. Например, в этой модели не представлены расширяющиеся остатки вспышек Сверхновых (Т = 108), планетарные туманности и некоторые другие газовые образования, не находящиеся в равновесии по давлению с основными четырьмя фазами межзвездного газа. Действительно, их объем и масса в каждый момент времени не существенны по сравнению с уже имеющимся в Галактике газом. Однако именно они поддерживают баланс вещества и энергии в этом постоянно остывающем и сгущающемся в звезды газе.

Химический состав межзвездного газа примерно такой же, как у Солнца и у большинства наблюдаемых звезд: на 10 атомов водорода (Н) приходится 1 атом гелия (Не) и незначительное количество других, более тяжелых элементов; среди них больше всего кислорода (О), углерода (C) и азота (N). В зависимости от температуры и плотности газа его атомы находятся "в нейтральном или ионизованном состоянии, входят в состав молекул или твердых конгломератов - пылинок.

Вообще говоря, для каждого химического элемента существует свой диапазон условий, при которых он находится в том или ином состоянии ионизации. Но поскольку подавляющее большинство атомов принадлежит водороду, его свойства и определяют состояние межзвездного газа в целом: горячая и теплая фазы являются областями ионизованного водорода (их называют области или зоны НII), прохладная фаза содержит преимущественно нейтральные атомы водорода (облака НI), а холодная фаза состоит в основном из молекулярного водорода (Н2), который образуется, как правило, во внутренних плотных частях облаков НI.

Молекулы водорода были впервые выявлены в межзвёздной среде в 1970 г. по ультрафиолетовым линиям поглощения в спектрах горячих звезд. В том же году в межзвездном пространстве были найдены молекулы угарного газа (СО) по их радиоизлучению с длиной волны l = 2,6 мм. Эти две молекулы наиболее распространены в космосе, причем молекул Н2 в несколько тысяч раз больше, чем молекул СО.

Познакомимся с молекулой водорода, поскольку это главный строительный материал, из которого формируются звезды. Когда два атома водорода подходят близко друг к другу, их электронные оболочки резко перестраиваются: каждый из электронов начинает двигаться вокруг двух протонов, связывая их между собой наподобие электрического "клея". В космических условиях объединение атомов водорода в молекулы происходит, скорее всего, на поверхности пылинок, которые играют роль своеобразного катализатора этой реакции.

Молекула водорода обладает не очень большой прочностью: для ее разрушения (диссоциации) нужна энергия 4,5 эВ или больше. Такую энергию имеют кванты с длиной волны короче чем 275,6 нм. Подобных ультрафиолетовых квантов в Галактике много - их излучают все горячие звезды. Однако сама молекула Н2 поглощает эти кванты крайне неохотно. Обычно разрушение молекул Н2 происходит следующим образом. Квант с энергией 11,2 эВ (l = 101.6 нм) переводит один из электронов молекулы в возбужденное состояние. Обратный переход в основное состояние, как правило, сопровождается излучением такого же кванта, но иногда квант не излучается, а энергия расходуется на возбуждение колебаний молекулы, которые заканчиваются ее распадом.

Как известно, жесткие ультрафиолетовые кванты с энергией более 13,6 эВ ионизуют атомы водорода и поэтому полностью поглощаются межзвездной средой в непосредственной близости от горячих звезд. Более мягкие кванты, в том числе и с энергией 11,2 эВ, почти беспрепятственно распространяются в Галактике и разрушают молекулярный водород везде, где он для них доступен. Единственное место, где молекула Н2 может жить сравнительно долго, - это недра плотных газопылевых облаков, куда ультрафиолетовые кванты не могут пробиться сквозь плотную пылевую завесу. Но к сожалению, по этой же причине молекулярный водород становится практически недоступным для наблюдения.

Комбинация первого возбужденного электронного состояния молекулы Н2 с различными ее квантовыми переходами дает набор спектральных линий в диапазоне длин волн 99,1-113,2 нм. Когда свет горячей звезды проходит сквозь полупрозрачное облако или сквозь наружные разреженные слои гигантских плотных облаков, в его спектре образуются соответствующие линии поглощения молекулы Н2. Они-то и были зафиксированы в 70-х годах с помощью космических телескопов в спектрах полутора сотен близких звезд.

Однако сообщить нам сколько-нибудь полные сведения о распределении молекулярного водорода в Галактике ультрафиолетовое излучение не может. Ему не дробиться в недра массивных облаков, где как раз и находится главное хранилище холодного газа -непосредственного предка молодых звезд. Поэтому распределение молекул На в нашей и в других галактиках изучают пока косвенными методами: по распределению других молекул, имеющих спектральные линии, удобные для наблюдения. Самая популярная в этом отношении молекула угарного газа, она же окись углерода, т. е. СО.

Ее энергия диссоциации 11,1 эВ, поэтому она может существовать там же, где молекулярный водород. Сталкиваясь с другими атомами и молекулами, молекулы СО возбуждаются и затем излучают линии так называемых вращательных переходов. Наиболее длинноволновая из них (l = 2,6 мм) легко наблюдается во многих областях Галактики: светимость некоторых молекулярных облаков в линии СО достигает нескольких светимостей Солнца (Lc = 4·1033 эрг/с).

Радионаблюдения в линиях СО и некоторых других молекул (HCN, ОН, CN) позволяют охватить все облако в целом, все его области с разнообразными физическими условиями. Наблюдения же нескольких линий одной молекулы дают возможность определить в каждой области температуру и плотность газа. Однако переход от наблюдаемой интенсивности в линии излучения какой-либо молекулы (даже такой распространенной, как СО) к полной концентрации, а следовательно, и массе газа таит в себе значительную неопределенность. Приходится делать предположения о химическом составе облаков, о доле атомов, "погребенных" в пылинках, и т. п. Точное значение коэффициента перехода от интенсивности линии СО к количеству молекул Н2 до сих пор бурно обсуждается. Разные исследователи используют значение этого коэффициента, различающееся в 2-3 раза.

Соответственно и содержание молекулярного газа в Галактике известно с такой же, если не с худшей, точностью. Особенно сложно определить содержание молекулярного газа вдали от Солнца, например в окрестности центра Галактики. Поскольку звездообразование там происходит более интенсивно, чем у нас, на периферии Галактики, межзвездная среда там сильнее обогащена тяжелыми элементами - продуктами термоядерного синтеза. Точно пока нельзя сказать, но, если принять во внимание изменение химического состава вдоль радиуса галактического диска, содержание элементов группы CNO в ядре Галактики должно быть раза в 3 выше, чем в окрестности Солнца.

Если это действительно так, то соответственно в 3 раза ниже следует брать коэффициент перехода СО - Н2. Эти и другие неопределенности приводят к тому. что масса молекулярного газа во внутренней области Галактики (R<10 кпк) оценивается различными исследователями от 5·108 до 3·109 Мс

 

Светимость и расстояние до звезд

 

Угловые размеры звезд очень малы. Даже в самые большие телескопы нельзя увидеть звезды в виде "реальных" дисков. Подчеркиваю слово "реальных", так как благодаря чисто инструментальным эффектам, а главным образом неспокойностью атмосферы, в фокальной плоскости телескопов получается "ложное" изображение звезды в виде диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны быть меньше одной сотой доли секунды дуги.

Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, "разрешена". Это означает, что мы можем измерять только потоки излучения от звезд в разных спектральных участках. Мерой величины потока является звездная величина.

Светимость определяется, если известны - видимая величина и расстояние до звезды. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояние до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающие нескольких десятков парсек, расстояние определяется известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, то есть в разное время года. Этот метод имеет довольно большую точность и достаточно надежен. Однако для большинства других более удаленных звезд он уже не годится: слишком малые смещения положения звезд надо измерять - меньше одной сотой доли секунды дуги! На помощь приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения.

Информация о работе Звезды и их эволюция