Автор работы: Пользователь скрыл имя, 11 Октября 2010 в 18:20, Не определен
1. Введение
2. Возможности генной инженерии
1. Медицина
2. Генотерапия
3. Сельское хозяйство
3. Клонирование.
4. Проблемы генной инженерии
5. Заключение
Список используемой литературы
Содержание.
1. Введение. 2
2. Возможности генной инженерии.
3. Клонирование. 7
4. Проблемы генной инженерии. 8
5. Заключение. 13
Список
используемой литературы. 15
1. Введение.
Генная
инженерия — это метод
Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации — генов. Ген — участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген — один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.
Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.
Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.
Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним
2.1. Медицина.
Значительный прогресс достигнут в практической области создания новых продуктов для медицинской промышленности и лечения болезней человека.
Использование генно-инженерных продуктов в медицине:
В
настоящее время
Технологии генодиагностики и генотерапии базируются на мировых достижениях в расшифровке генома человека. Технологии генодиагностики включают разработку приемов точной локализации генов в геноме человека, ответственных за наследственные и соматические заболевания. Их важной составляющей является сравнительный анализ структуры генома в норме и патологии.
Генотерапия и генодиагностика - это перспективные технологии фундаментальной и прикладной биомедицины, направленные на лечение и профилактику наследственных (генетических) и приобретенных заболеваний, в том числе онкологических.
В
основе генотерапии, развивающейся
на базе и в комплексе с
Важнейшей
технологической задачей
2.3. Сельское хозяйство.
Поэтому любой прогресс биотехнологий растений будет зависеть от разработки генетических систем и инструментов, которые позволят более эффективно управлять трансгенами. Будущее, очевидно, будет за управляемым переносом генов от сорта к сорту, основанного на применении предварительно подготовленного растительного материала, который уже содержит в нужных хромосомах участки гомологии, необходимого для гомологичного встраивания трансгена. Кроме этого учёные занимаются поиском генов, кодирующих новые полезные признаки.
Еще 10 лет тому назад биотехнология растений заметно отставала в своем развитии, но за последние годы наблюдается быстрый выброс на рынок трансгенных растений с новыми полезными признаками. Генетические изменённые растения с устойчивостью к различным классам гербицидов в настоящее время являются наиболее успешным биотехнологическим продуктом.
Современная
биотехнология в состоянии
3. Клонирование
Клонирование органов и тканей - это задача номер один в области трансплантологии, травматологии и в других областях медицины и биологии. При пересадке клонированного органа не надо думать о подавлении реакции отторжения и возможных последствиях в виде рака, развившегося на фоне иммунодефицита. Клонированные органы станут спасением для людей, попавших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний пожилого возраста (изношенное сердце, больная печень и т.д.).
Самый наглядный эффект клонирования - дать возможность бездетным людям иметь своих собственных детей. Миллионы семейных пар во всем мире сегодня страдают, будучи обреченными, оставаться без потомков. Клонирование поможет людям, страдающим тяжелыми генетическими болезнями. Если гены, определяющие какую-либо подобную болезнь, содержатся в хромосомах отца, то в яйцеклетку матери пересаживается ядро ее собственной соматической клетки, - и тогда появится ребенок, лишенный опасных генов, точная копия матери. Если эти гены содержатся в хромосомах матери, то в ее яйцеклетку будет перемещено ядро соматической клетки отца, - появится здоровый ребенок, копия отца.
Вспомним, что клонирование постоянно происходит в естественных условиях, когда рождаются однояйцовые, или идентичные близнецы. Идентичны они в своем генном наборе, что легко доказывается возможностью пересадок органов и тканей между ними. Просто развитие нескольких зародышей из одного оплодотворенного яйца происходит редко и непредсказуемо.
Более скромная, но не менее важная задача клонирования - регулирование пола сельскохозяйственных животных и клонирование в них сугубо человеческих генов, "терапевтических белков", которые используются для лечения людей. Например, гемофиликов, которые страдают от мутаций в гене, кодирующем кровеостанавливающий белок ("фактор IX"). Сегодня эти белки добывают из крови доноров, а те бывают разные, в том числе и инфицированные вирусом СПИДа. Вот почему гемофилики считаются "группой риска" по СПИДу.
В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.
В середине 1998 года английский ученый Арпад Пустаи на основании проведенных опытов впервые заявил о том, что употребление подопытными крысами генетически модифицированного картофеля привело к серьезным повреждениям их внутренних органов и иммунной системы. У животных возник целый набор серьезных изменений желудочно-кишечного тракта, печени, зоба, селезенки. Но самое зловещее - уменьшился объем мозга.
Дополнительным подтверждением того, что воздействие генетически измененных продуктов на организм человека и окружающую среду является мало изучено, стало заявление года ученого Джона Лузи.
Так, в мае 1999 года он сообщил о том, что пыльца генетически модифицированной пшеницы, изначально содержащая небольшую долю пестицидов, способна убивать личинок бабочки-данаиды.
В
ноябре 1999 года для обсуждения результатов
исследований Пустаи и Лузи была организована
специальная научная
При этом само существование подобных противоречий свидетельствует, что выведение генетически модифицированных видов растений и животных представляет определенную опасность, обусловленную непредсказуемостью их развития и поведения в естественной среде.