Соотношение неопределенности Гейзенберга

Автор работы: Пользователь скрыл имя, 23 Мая 2015 в 16:25, реферат

Описание работы

Логическим развитием идеи о корпускулярных свойствах света (“волны могут вести себя подобно частицам”) явилось признание волновых свойств у частиц (электрон, нейтрон, протон и т.д. мало отличаются от фотонов и подобно им могут проявлять волновые свойства).
Например, в случае очень близкого расположения небольших щелей в опыте Юнга с источником электронов вместо светового так же возникает интерференционная картина. Рентгеновские лучи (фотоны с очень большой энергией) при дифракции на трехмерной кристаллической структуре дают картинку, сходную с получающейся при дифракции электронов.

Содержание работы

1. Соотношение неопределенности Гейзенберга………………………….……3
1.1 Принципиально отличающийся от классического закон сложения вероятностей взаимоисключающих друг друга…………………………….…..5
1.2 Отвержение возможности выполнения измерений и наблюдений объектов, не влияющих на эволюцию изучаемой системы………………........7
2. "Старая" и "новая" квантовые механики……………………….………….....8
2.1 Формулировка принципов квантовой механики Н. Бора….…………....…8
2.2 Квантово-механическая теория Н. Бора………………………………....….9
3. Стационарные состояния квантово-механических систем.............…........ 11
Список используемой литературы……………………………………………..16

Файлы: 1 файл

реферат ксе.doc

— 224.00 Кб (Скачать файл)

 

(13) ,

 

и определить соответствующие им энергии

 

(14) .

 

Т.о. наличие возможности переходов между двумя эквивалентными состояниями приводит к возникновению в системе двух энергетических уровней вместо одного. Система может находиться лишь в одном из построенных стационарных состояний ( ), но в каждом из них вероятность найти классически осмысленную конфигурацию или одинакова и равна 0.5. Симметричное стационарное состояние энергетически более выгодно и наиболее часто реализуется в природе.

Аммиачный мазер. Существует множество разнообразных систем, обладающих двумя базисными состояниями, не сохраняющимися во времени. К ним относится молекула аммиака, с классической точки зрения имеющая две конфигурации или , способные превращаться друг в друга из-за туннельного эффекта. Стационарные энергетические уровня молекулы разделены зазором, энергетически соответствующем высокочастотному радиоизлучению. Настроенное в резонанс внешнее электромагнитное поле способно вызывать переходы между этими состояниями, которых сопровождаются поглощением или излучением энергии в виде электромагнитных волн (на другом языке - фотонов). Ансамбль из молекул, находящихся в верхнем энергетическом состоянии способен только излучать энергию, т.е. взаимодействовать с электромагнитным полем, усиливая его. На описанном принципе основана работа первого мазера - лазера, работающего в радио диапазоне излучения.

Природа химической связи. Системой с двумя состояниями является простейшее химическое соединение - молекулярный ион водорода . Как и в рассмотренных выше случаях причиной не сохранения во времени выбранных базисных состояний является туннельный эффект. При сближении ядер вероятность туннельного перехода электрона от одного к другому возрастает , что приводит к увеличению расстояния между подуровнями и делает симметричное состояние иона энергетически более выгодным. “Стремясь к снижению полной энергии”, ядра сближаются, что воспринимается как результат действия дополнительной силы, обеспечивающей возникновение химической связи.

Природа электростатических и ядерных взаимодействий. В общих чертах сходный механизм лежит в основе современных представлений о возникновении электростатических взаимодействий между электрическими зарядами. Вместо “туннелирующего” электрона в молекулярном ионе роль переносчика электрических взаимодействий между зарядами играют виртуальные фотоны, обнаружения которых в реальном эксперименте оказывается принципиально невозможным.

Сходный механизм был предложен и в случае сильных ядерных взаимодействий. Быстрый спад ядерных сил при увеличении расстояний привел к допущению, что переносчиком взаимодействия является на обладающий нулевой массой покоя фотон, а весьма тяжелая частица с массой, превосходящей электронную примерно в 200 раз. Вскоре такие частицы были обнаружены в космических лучах (пи-мезоны), но дальнейшие эксперименты показали их непричастность к ядерным силам. Однако выдвинутая гипотеза все же оказалась жизнеспособной: впоследствии были обнаружены похожие на ранее открытые мезоны частицы, свойства которых согласовывались с предсказанными на основе анализа ядерных сил.

Электропроводность кристаллов. Системы с двумя состояниями обладают двумя энергетическими подуровнями . Увеличение числа эквивалентных состояний приводит к появлению большего числа подуровней. Примером системы с большим числом состояний может служить электрон в идеальном кристалле, который может быть локализован вблизи каждого из N регулярно расположенных ионов, что соответствует набору базисных состояний: . Самой низкой энергии соответствует симметричная линейная комбинация базисных состояний:

 

(15) ,

другие ортогональные линейные комбинации дают систему из близкорасположенных друг к другу N энергетических подуровней. При увеличении числа атомов в кристалле подуровни сливаются в сплошную полосу - энергетическую зону, соответствующую непрерывному набору разрешенных значений энергии электрона. Поскольку свободная частица в пустом пространстве так же может обладать энергией из непрерывного набора, поведение электрона в идеальном бесконечном кристалле весьма сходно с поведением свободной частицы. Этим объясняется возможность существования электропроводности в твердых кристаллических телах.

Уравнение Шредингера. При описании движения микрочастиц в пространстве в качестве базисного удобно выбрать непрерывный набор состояний с определенными координатами , для каждого из которых может быть записано уравнение, аналогичное (10). Конкретный вид оператора Гамильтона для этого случая был правильно угадан Шредингером и имеет вид, аналогичный классическому выражению для механической энергии:

(16) ,

 

где - оператор импульса, - оператор потенциальной энергии. Наибольший практический интерес представляют вероятности обнаружить находящуюся в стационарном состоянии частицу в заданной точке пространства R. В соответствии с общими правилами квантовой механики эта вероятность дается квадратом модуля соответствующей амплитуды, называемой волновой функцией:

 

(17) .

 

Анализ математических свойств стационарного уравнения Шредингера

 

(18)

 

показывает, что в случаях, когда область классически возможного движения частицы в пространстве ограничена, разрешенным является только дискретный набор энергетических уровней. При неограниченном движении энергетический спектр непрерывен.

В простейшем случае стационарных решений для атома водорода связанным состояниям (электрон находится вблизи ядра) соответствует набор разрешенных значений энергии, полностью совпадающий с вычисленными в рамках первой модели Бора и прекрасно согласующийся с экспериментом. В ионизованном состоянии (электрон ушел от ядра на бесконечно большое расстояние) частица может обладать любым значением энергии.

Список используемой литературы

 

  1. Гейзенберг В. Развитие квантовой механики. В кн. Гейзенберг В., Шредингер Э., Дирак П. А. М. Современная квантовая механика. Три нобелевских доклада. М., ГТТИ, 1934, с. 13 – 35.
  2. Гейзенберг В. Физика и философия. М., ИЛ, 1963.
  3. Борн М.. Натуральная философия причины и случая. В кн. Борн М. Моя жизнь и взгляды. М., Прогресс,, 1973, с. 141 – 158.
  4. Гейзенберг В. Физические принципы квантовой теории. Л., М., ГТТИ, 1932.
  5. Джеммер М. Эволюция понятий квантовой механики. М., Наука, 1985.

 

 


 

 



Информация о работе Соотношение неопределенности Гейзенберга