Автор работы: Пользователь скрыл имя, 25 Марта 2011 в 10:35, реферат
Следует отметить, что вопрос о том, каким же было рождение Вселенной - "горячим" или "холодным", - не сразу был решён однозначно и занимал умы астрономов долгое время. Интерес к проблеме был далеко не праздным - ведь от физического состояния вещества в начальный момент зависит, например, возраст Вселенной. Кроме того, при высоких температурах могут протекать термоядерные реакции. Следовательно, химический состав "горячей" Вселенной должен отличаться от состава "холодной". А от этого в свою очередь зависят размеры и темпы развития небесных тел...
Итак, в результате Большого взрыва 13-20 млрд. лет назад начал действовать уникальный ускоритель частиц, в ходе работы которого непрерывно и стремительно сменяли друг друга процессы рождения и гибели (аннигиляции) разнообразных частиц.
4. Большой Взрыв.
Предыдущая
вселенная перед взрывом
Как только давление достигло
критического уровня, весь вакуум
внутри первичного тела
Сжатие
вселенной происходило так
Циклоны не просто внешне напоминают спиральные галактики, у них и природа одинаковая. В центре такого вихря высокая плотность вещества, а вот момент импульса равен нулю. На периферии наоборот плотность вещества низкая, а момент импульса большой. В результате взаимодействия электронного и протонного потока образовалось большое количество спиральных галактик. Поскольку в центре галактики вещество не имело момента импульса, то протоны сразу же собрались в гигантские звёзды, и сразу начались термоядерные реакции. Большой Взрыв был не таким эффектным, как считают физики, но очень эффективным. Большая часть энергии превратилась в вещество. Фактически взрыва, как такового, и не было. Было превращение энергии в вещество по всему объёму вселенной. Доказательством этого является то, что наша вселенная однородна и изотропна. Это означает, что в любой сфере, с диаметром ~ равным 300 световых лет, количество галактик приблизительно равно. Однородность и изотропность вселенной, принято называть Космологическим Принципом. При взрыве, который предложен физиками, такого эффекта быть не может. Это возможно только в случае, когда вещество равномерно возникло во всём объёме вселенной.
При термоядерной реакции выделяется не только энергия, но и вакуум. Расстояние между пунктом "А" и "Б" зависит от количества вакуума находящегося между ними. Чем активнее происходили термоядерные процессы в галактике, тем больше выбрасывалось вакуума, и тем быстрее она удалялась от остальных галактик. Вселенная начала расширяться. Вселенная расширялась не за счёт энергии первичного взрыва, а благодаря термоядерным реакциям звёзд. Как сохраняли галактики свою структуру можно найти в статье "Геометрия галактик". Вакуум, освободившийся после термоядерных реакций, постепенно покидает пределы метагалактики, но пока термоядерная активность звёзд велика, и количество вакуума, излучаемое звёздами больше, чем покидающее метагалактику, она будет расширяться.
Как только термоядерная активность галактик уменьшится, вселенная продолжит увеличиваться, а вот метагалактика начнёт уменьшаться. Это произойдёт тогда, когда количество вакуума, покидающее метагалактику, будет больше, чем получаемую при термояде. Галактики начнут движение к общему центру, цикл замкнётся, и всё повторится с начала.
Мы выяснили, что Вселенная постоянно расширяется; тот момент с которого Вселенная начала расширятся, принято считать ее началом. Его называют “Большим Взрывом” или английским термином Big Bang.
Под
расширением Вселенной
Кратко изложим все те умозаключения о возможных параметрах Вселенной на стадии Большого Взрыва, к которым мы пришли.
Средняя
плотность Вселенной в
Кроме того высокой должна была быть и температура, настолько высокой, что плотность излучения превышала плотность вещества. Иначе говоря энергия всех фотонов содержащихся в 1 куб. см была больше суммы общей энергии частиц, содержащихся в 1 куб. см. На самом раннем этапе, в первые мгновения “Большого Взрыва” вся материя была сильно раскаленной и густой смесью частиц, античастиц и высокоэнергичных гамма-фотонов. Частицы при столкновении с соответствующими античастицами аннигилировали, но возникающие гамма-фотоны моментально материализовались в частицы и античастицы.
Подробный анализ показывает, что
температура вещества Т
(1)
Зависимость температуры Т от времени t дает нам возможность определить, что например, в момент, когда возраст Вселенной исчислялся всего одной десятитысячной секунды, её температура представляла один биллион Кельвинов.
5. Эволюция вещества
Температура раскаленной
(2)
Со временем энергия фотонов понижалась, и как только она упала ниже произведения энергии частицы и античастицы (2moc2), фотоны уже не способны были обеспечить возникновение частиц и античастиц с массой mo. Так, например, фотон, обладающий энергией меньшей, чем 2*938 Мэв, не способен материализоваться в протон и антипротон, потому что энергия покоя протона равна 938 мэв.
В предыдущем соотношении
(3)
то есть
(4)
Знак
неравенства формула (4) означает следующее:
частицы и соответствующие им
античастицы возникали при
На начальном этапе расширения Вселенной из фотонов рождались частицы и античастицы. Этот процесс постоянно ослабевал, что привело к вымиранию частиц и античастиц. Поскольку аннигиляция может происходить при любой температуре, постоянно осуществляется процесс
частица + античастица Þ 2 гамма-фотона
при
условии соприкосновения
гамма-фотон Þ частица + античастица
мог протекать лишь при достаточно высокой температуре. Согласно тому, как материализация в результате понижающейся температуры раскаленного вещества приостановилась,
эволюцию Вселенной принято разделять на четыре эры: адронную, лептонную, фотонную и звездную.
5.1. Адронная эра.
Длилась примерно от t=10-6с до t=10-4с. Плотность порядка 1017 кг/м3 при T=1012…1013К.
При очень высоких температурах и плотности в самом начале существования Вселенной материя состояла из элементарных частиц. Вещество на самом раннем этапе состояло прежде всего из адронов, и поэтому ранняя эра эволюции Вселенной называется адронной, несмотря на то, что в то время существовали и лептоны.
Через миллионную долю секунды с момента рождения Вселенной, температура T упала на 10 биллионов Кельвинов(1013K). Средняя кинетическая энергия частиц kT и фотонов hn составляла около миллиарда эв (103 Мэв), что соответствует энергии покоя барионов.
В
первую миллионную долю секунды эволюции
Вселенной происходила
К моменту, когда возраст Вселенной достиг одной десятитысячной секунды (10-4 с), температура ее понизилась до 1012 K, а энергия частиц и фотонов представляла лишь 100 Мэв. Ее не хватало уже для возникновения самых легких адронов - пионов. Пионы, существовавшие ранее, распадались, а новые не могли возникнуть. Это означает, что к тому моменту, когда возраст Вселенной достиг 10-4 с, в ней исчезли все мезоны.
На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.
5.2. Лептонная эра.
Длилась примерно от t=10-4с до t=101с. К концу эры плотность порядка 107 кг/м3 при T=109К.
Когда
энергия частиц и фотонов понизилась
в пределах от 100 Мэв до 1 Мэв в
веществе было много лептонов. Температура
была достаточно высокой, чтобы обеспечить
интенсивное возникновение
Лептонная эра начинается с распада последних адронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 1010 K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем “реликтовыми”.
Информация о работе Сценарий происхождения Вселенной. Землеустройство