Автор работы: Пользователь скрыл имя, 22 Октября 2009 в 14:25, Не определен
В данном реферате рассмотрены:
Теория систем, три основных её принципа:
1. Принцип сильного звена активных систем. Эффективность таких систем повышается за счет одного сильного звена.
2. Принцип обратных связей. Обратные связи являются также фундаментальным понятием кибернетики и потому рассматриваются в следующей главе.
3. Принцип возникновения новых свойств и функций при объединении элементов в систему (принцип эмерджентности).
Обычно под хаосом всегда понималось неупорядоченное, случайное, непрогнозируемое поведение элементов системы. Наиболее характерным примером этого является броуновское движение мелких частиц в воде. Оно состоит хаотических тепловых перемещениях громадного числа молекул воды, случайным образом ударяющих по плавающим в воде частицам, вынуждая их к случайным блужданиям. Так как точно установить последовательность изменений в движении каждой частицы невозможно, то такой процесс полностью непредсказуем, недетерминирован)Другими словами, так как закономерности, позволяющие прогнозировать каждое последующее изменение траектории частицы по предыдущему ее состоянию, вывести невозможно, то невозможно и связать между собой причины и следствия, формализовать причинно-следственные связи. Такой вид хаоса называют недетерминированным. Для его математического описания используется аппарат статистической физики. Он позволяет выводить формулы, описывающие некоторые обобщенные параметры броуновского движения, например расстояния, пройденные отдельными частицами за некоторое время.
Кроме недетерминированного хаоса различают еще хаос детерминированный. Последний порождается не случайным поведением большого количества элементов системы, а внутренней сущностью нелинейных процессов. Примером детерминированного хаоса является поведение двух упруго сталкивающихся бильярдных шаров. Поведение такой системы имеет статистические закономерности: отталкиваясь друг от Друга и от стенок бильярдного стола, шары перемещаются под разными углами, и через некоторое множество соударений их можно рассматривать как неустойчивую динамическую систему с непрогнозируемым поведением. Аналитические решения уравнений, описывающих поведение таких систем, как правило, получены быть не могут. Исследование поведения таких систем проводят обычно с помощью компьютерного моделирования.
В
фазовом пространстве детерминированный
хаос отображается непрерывной траекторией,
не имеющей пересечений и постепенно заполняющей
некоторую область фазового пространству
Рис.
При этом любую сколь угодно малую зону фазового пространства пересекает бесконечно большое количество отрезков траектории. Это и создает в каждой зоне случайную ситуацию — хаос: в частности, хотя движение бильярдных шаров полностью и подчиняет классической механике, спрогнозировать их траектории нельзя.
До сих пор точные науки изучали главным образом динамику изолированных и повторяющихся процессов (вроде движения планет). Успехи этих исследований очевидны. Однако множество явлений, считавшихся слишком сложными или просто беспорядочными, ранее не поддавались строгому рассмотрению. Теперь виденве природы претерпевает радикальные изменения, наука созрела для проникновения в суть сложных систем, для раскрытия глубоких закономерностей, скрытых под их, казалось бы, хаотичным поведением.
Попытки
универсализации научных
К аналогичным выводам приводили многих ученых, представляющих самые различные направления науки, совместные поиски, широкое знакомство с достижениями в пограничных областях знания, связанными с интеграцией науки. Так, Дж. Дарвин, сын великого естествоиспытателя, указал на возможность распространения закона естественного отбора на физические и астрономические явления (1905-1907).
Все выдвигаемые принципы объединяло одно: они регулировали устойчивость явлений и относились к сфере организации. В большинстве из них говорилось о научной ценности аналогий, благотворности их упрощающей и эвристической роли. Но до идей общей теории организации они были далеки.
Ближе всех подошел к реализации идеи построения организационной науки наш соотечественник А.А.Богданов (Малиновский). Он разработал учение о типах и закономерностях строения и развития систем — тектологию. Наиболее полное воплощение она получила в его трехтомном сочинении «Всеобщая организационная наука (тектология)». Оно вышло в свет в Германии и только затем в нашей стране в переводе с немецкого издания.
«Мой исходный пункт, — писал А. А. Богданов, — заключается в том, что структурные отношения могут быть обобщены до такой же степени формальной чистоты схем, как в математике отношения величин, и на такой основе организационные задачи могут решаться способами, аналогичными математическим».
А.
А. Богданов отмечал два наиболее
общих организационных
Первоэлементом
структуры А. А. Богданов считал связь
— организационную
«Порядок, — отмечал А. А. Богданов, — начинается с объединения объектов. Он с необходимостью следует за организационным кризисом — ростом энтропии и хаоса, в которых действует элемент порядка — отбор (биорегулятор). При этом потери всегда превышают усвоение материала среды — в строгом соответствии с требованием закона сохранения энергии.
Среда,
вторгаясь в систему, вызывает ее
мутацию, повышает уровень энтропии,
но порядок вновь
Прогресс — это прежде всего структурная активность, и А. А. Богданов полагал возможным вычислять ее количественные параметры. Он считал, что движущей силой прогресса являются противоречия между однородностью и неоднородностью, устойчивостью и неустойчивостью, равновесием и неравновесностью. В положительном, прогрессивном отборе к старым противоречиям добавляются новые, и это является прологом нарушения устойчивости. Прогрессу благоприятствует постоянство изменений, или устойчивая неустойчивость: новая техника или новый вид продукции на предприятии вносят элемент расстройства и беспорядка, но без них нет движения вперед.
Платой за организационный процесс всегда является утрата прежней формы, ее сбрасывание. Но то, что в мертвых телах является причиной разрушения, у белка является основным условием существования. В организационном плане это верно для всех материальных систем: у организации нет «мертвых тел», как нет бесструктурной материи. Реформы в обществе — пример созидательного использования одного из структурообразующих механизмов. -
В единстве положительного и отрицательного отбора осуществляется динамика структурного развития. Первый усложняет формы, увеличивает разнородность бытия и диапазон выбора, доставляя строительный материал для возрастающей организации; второй — упрощает этот материал, устраняя из него все непрочное, неустойчивое, вносит в связи однородность, согласованность, порядок, то есть производит систематизацию. «Дополняясь взаимно, — отмечал А. А. Богданов, — оба процесса стихийно организуют мир».
Закон сохранения организации, сформулированный А. А. Богдановым, вытекал из логики мирового развития, подтверждался всем опытом развития природы и общества.
А. А. Богданов одним из первых предпринял попытку системного подхода к анализу взаимоотношений части и целого. Суммарная структурная устойчивость комплекса есть результат частичных устойчивостей, причем мерилом выступает самое неустойчивое звено. Вся цепь никогда не может быть крепче своего самого слабого звена. Когда система рассогласована, вывести из строя ее можно минимальным усилием. Эту закономерность теории игр широко используют менеджеры, стратеги, военачальники. Это — закон минимума: «устойчивость целого зависит от наименьших относительных сопротивлений всех его частей во всякий момент». Он известен в механике как принцип наименьшего действия, в биологии как закон выживания, в агрохимии как формула урожайности, в кибернетике как теория «вето».
В организационных отношениях важную роль играет среда. Она может изменять систему или консервировать ее, что также представляет собой форму изменений. Чем более изменчива среда, тем менее устойчив комплекс. И напротив, чем среда консервативнее, тем он незыблемее. При этом структура объекта также может быть консервативной или революционной, жесткой или пластичной: она как бы повторяет колебания среды, отзываясь на них. Консервативные типы отношений погибают при ускорении темпов развития. Погибая, они, используя инерцию, долго сопротивляются.
Чем значительнее изменчивость основы отбора, тем выше разнородность элементов, богаче выбор комбинаций элементов. Разнородность не есть дезорганизованность, богатство особенного не есть отрицание общего. Она всегда означает усиление сложности внутренних отношений системы, понимание ее устойчивости как необходимое условие выживаемости в окружающей среде. Это происходит до известного предела, за которым начинается преобладание неустойчивости, разнородности, постепенно перевешивающее порядок. Система в целом становится неустойчивой. Сумма ее активностей и сопротивлении окружающей среде понижается, разнородность переходит в дезорганизованность. То, что берет отрицательный отбор, уносится безвозвратно. В новых условиях на месте утраченных элементов образуются или приобретаются из внешней среды новые. Без разрушения нет созидания. Это две стороны взаимодействия системы со средой. Другой стороной необратимости разрушений является непрерывность созидания, прогресса в системном процессе.
Для многих ученых организационные и информационные идеи врача и экономиста А. А. Богданова казались неприемлемыми именно в силу их всеобщности, высокого уровня абстракции. Такой высокий полет мысли смущал их, они вели против тектологии и ее автора явную и скрытую борьбу.
А в 1940-е годы известный австрийский биолог Людвиг фон Берталанфи опубликовал книгу «Общая теория систем», в которую вошли основные положения тектологии. На удивительное сходство названных идей впервые указал в 1978 году американский ученый Р. Маттесич. Он высказал недоумение по поводу отсутствия каких-либо ссылок на А. А. Богданова в работах его зарубежного последователя: ведь труды русского учёного наверняка были известны ему в немецком переводе.
В
настоящее время для
Если
кибернетика занимается проблемой
поддержания устойчивости путем
использования отрицательной
Синергетика - синтетическое направление, она использует достижения математики и естественных наук, а также мощь современных компьютеров.
Профессор
Г. Н. Дульнев в своей книге
«Введение в синергетику» приводит
несколько вариантов
•
синергетика — наука о
•
синергетика — наука о
• синергетика — термодинамика открытых систем вдали от равновесия;
Информация о работе Самоорганизация процессов в геологии биологии и экологии