Автор работы: Пользователь скрыл имя, 06 Января 2011 в 13:21, реферат
Пространство и время как всеобщие и необходимые формы бытия материи являются фундаментальными категориями в современной физике и других науках. Физические, химические и другие величины непосредственно или опосредованно связаны с измерением длин и длительностей, т.е. пространственно-временных характеристик объектов. Поэтому расширение и углубление знаний о мире связано с соответствующими учениями о пространстве и времени.
Пространство
и время в современной
научной картине
мира
Введение
Пространство
и время как всеобщие и необходимые
формы бытия материи являются
фундаментальными категориями в
современной физике и других науках.
Физические, химические и другие величины
непосредственно или опосредованно связаны
с измерением длин и длительностей, т.е.
пространственно-временных характеристик
объектов. Поэтому расширение и углубление
знаний о мире связано с соответствующими
учениями о пространстве и времени.
1. Развитие взглядов
на пространство и время
в истории науки
Уже в античном мире мыслители задумывались над природой и сущностью пространства и времени. Так, одни из философов отрицали возможность существования пустого пространства, или, по их выражению, небытия. Это были представители элейской школы в Древней Греции. А знаменитый врач и философ Эмпедокл хотя и поддерживал учение о невозможности пустоты, в отличие от элеатов утверждал реальность изменения и движения. Он говорил, что рыба, например, передвигается в воде, а пустого пространства не существует.
Некоторые философы, в том числе Демокрит, утверждали, что пустота существует, как материи и атомы, и необходима для перемещений и соединений атомов.
В доньютоновский период развитие представлений о пространстве и времени носило преимущественно стихийный и противоречивый характер. И только в «Началах» древнегреческого математика Евклида пространственные характеристики объектов впервые обрели строгую математическую форму. В это время зарождаются геометрические представления об однородном и бесконечном пространстве.
Геоцентрическая система К. Птолемея, изложенная им в труде «Альмагест», господствовала в естествознании до XVI в. Она представляла собой первую универсальную математическую модель мира, в которой время было бесконечным, а пространство конечным, включающим равномерное круговое движение небесных тел вокруг неподвижной Земли.
Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, развитой Н. Коперником в работе «Об обращениях небесных сфер». Принципиальное отличие этой системы мира от прежних теорий состояло
в том, что в ней концепция единого однородного пространства и равномерности течения времени обрела реальный эмпирический базис.
Признав подвижность Земли, Коперник в своей теории отверг все ранее существовавшие представления о ее уникальности, «единственности» центра вращения во Вселенной. Тем самым теория Коперника не только изменила существовавшую модель Вселенной, но и направила движение естественнонаучной мысли к признанию безграничности и бесконечности пространства.
Космологическая теория Д. Бруно связала воедино бесконечность Вселенной и пространства. В своем произведении «О бесконечности, Вселенной и мирах» Бруно писал: «Вселенная должна быть бесконечной благодаря способности и расположению бесконечного пространства и благодаря возможности и сообразности бытия бесчисленных миров, подобных этому…»1. Представляя Вселенную как «целое бесконечное», как «единое, безмерное пространство», Бруно делает вывод и о безграничности пространства, ибо оно «не имеет края, предела и поверхности».
Практическое обоснование выводы Бруно получили в «физике неба» И. Кеплера и в небесной механике Г. Галилея. В гелиоцентрической картине движения планет Кеплер увидел действие единой физической силы. Он установил универсальную зависимость между периодами обращения планет и средними расстояниями их до Солнца, ввел представление об их эллиптических орбитах. Концепция Кеплера способствовала развитию математического и физического учения о пространстве.
Подлинная революция в механике связана с именем Г. Галилея, Он ввел в механику точный количественный эксперимент и математическое описание явлений. Первостепенную роль в развитии представлений о пространстве сыграл открытый им общий принцип классической механики – принцип относительности Галилея. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, покоящихся или движущихся равномерно и прямолинейно с постоянной по величине и направлению скоростью. Такие системы называются инерциальными. Математические преобразования Галилея отражают движение в двух инерциальных системах, движущихся с относительно малой скоростью (меньшей, чем скорость света в вакууме). Они устанавливают инвариантность (неизменность) в системах длины, времени и ускорения.
Дальнейшее
развитие представлений о пространстве
и времени связано с
Декарт обосновывал единство физики и геометрии. Он ввел координатную систему (названную впоследствии его именем), в которой время представлялось как одна из пространственных осей. Тезис о единстве физики и геометрии привел его к отождествлению материальности и протяженности. Исходя из этого тезиса он отрицал пустое пространство и отождествил пространство с протяженностью.
Декарт развил также представление о соотношении длительности и времени. Длительность, по его мнению, «соприсуща материальному миру. Время же – соприсуще человеку и потому является модулем мышления». «…Время, которое мы отличаем от длительности, – пишет Декарт в «Началах философии», – есть лишь известный способ, каким мы эту длительность мыслим…»1
Таким образом, развитие представлений о пространстве и времени в доньютоновский период способствовало созданию концептуальной основы изучения физического пространства и времени. Эти представления подготовили математическое и экспериментальное обоснование свойств пространства и времени в рамках классической механики.
Новая физическая гравитационная картина мира, опирающаяся на строгие математические обоснования, представлена в классической механике И. Ньютона. Ее вершиной стала теория тяготения, провозгласившая универсальный закон природы – закон всемирного тяготения. Согласно этому закону сила тяготения универсальна и проявляется между любыми материальными телами независимо от их конкретных свойств. Она всегда пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная является не конечной, а бесконечной. Лишь в этом случае в ней может существовать множество космических объектов – центров гравитации. Так, в рамках ньютоновской гравитационной модели Вселенной утверждается представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения.
В 1687 г. вышел основополагающий труд Ньютона «Математические начала натуральной философии». Этот труд более чем на два столетия определил развитие всей естественнонаучной картины мира. В нем были сформулированы основные законы движения и дано определение понятий пространства, времени, места и движения.
Раскрывая сущность времени и пространства, Ньютон характеризует их как «вместилища самих себя и всего существующего. Во времени все располагается в смысле порядка последовательности, в пространстве – в смысле порядка положения»1. Он предлагает различать два типа понятий пространства и времени: абсолютные (истинные, математические) и относительные (кажущиеся, обыденные) и дает им следующую типологическую характеристику.
Из определений Ньютона следовало, что разграничение им понятий абсолютного и относительного пространства и времени связано со спецификой теоретического и эмпирического уровней их познания. На теоретическом уровне классической механики абсолютное пространство и время играли существенную роль во всей причинной структуре описания мира. Они выступали в качестве универсальной инерциальной системы отсчета, так как законы движения классической механики справедливы в инерциальных системах отсчета. На уровне эмпирического познания материального мира понятия «пространство» и «время» ограничены чувствами и свойствами познающей личности, а не объективными признаками реальности как таковой. Поэтому они выступают в качестве относительного времени и пространства.
Ньютоновское понимание пространства и времени вызвало неоднозначную реакцию со стороны его современников – естествоиспытателей и философов. С критикой ньютоновских представлений о пространстве и времени выступил немецкий ученый Г.В. Лейбниц. Он развивал реляционную концепцию пространства и времени, отрицающую существование пространства и времени как абсолютных сущностей.
Указывая на чисто относительный (реляционный) характер пространства и времени, Лейбниц писал: «Считаю пространство так же,
как и время, чем-то чисто относительным: пространство – порядком сосуществований, а время – порядком последовательностей»1.
Предвосхищая положения теории относительности Эйнштейна о неразрывной связи пространства и времени с материей, Лейбниц считал, что пространство и время не могут рассматриваться в «отвлечении» от самих вещей. «Мгновения в отрыве от вещей ничто, – писал он, – и они имеют свое существование в последовательном порядке самих вещей»2.
Однако данные представления Лейбница не оказали заметного влияния на развитие физики, так как реляционная концепция пространства и времени была недостаточна для того, чтобы служить основой принципа инерции и законов движения, обоснованных в классической механике Ньютона. Впоследствии это было отмечено и А. Эйнштейном.
Успехи ньютоновской системы (поразительная точность и кажущаяся ясность) привели к тому, что многие критические соображения в ее адрес обходились молчанием. А ньютоновская концепция пространства и времени, на основе которой строилась физическая картина мира, господствовала вплоть до конца XIX в.
Основные положения этой картины мира, связанные с пространством и временем, заключаются в следующем.
ступали в качестве избранной системы координат в классической механике.
• Принятие абсолютного времени и постулирование абсолютной и универсальной одновременности во всей Вселенной явилось основой для теории дальнодействия. В качестве дальнодействующей силы выступало тяготение, которое с бесконечной скоростью, мгновенно и прямолинейно распространяло силы на бесконечные расстояния. Эти мгновенные, вневременные взаимодействия объектов служили физическим каркасом для обоснования абсолютного пространства, существующего независимо от времени.
До XIX в. физика была в основном физикой вещества, т.е. она рассматривала поведение материальных объектов с конечным числом степеней свободы и обладающих конечной массой покоя. Изучение электромагнитных явлений в XIX в. выявило ряд существенных отличий их свойств по сравнению с механическими свойствами тел.
Информация о работе Пространство и время в современной научной картине мира