Парадокс близнецов

Автор работы: Пользователь скрыл имя, 02 Ноября 2010 в 16:55, Не определен

Описание работы

реферат

Файлы: 1 файл

Парадокс Близнецов.doc

— 201.50 Кб (Скачать файл)

    В инерциальных системах отсчёта действует  так называемый закон инерции - каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого  системы и были так называны.

    Если  сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения - тоже будет ИСО.

    Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО - также будет ИСО.

    Что же мы можем сказать об не-ИСО? О  них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением - будет не-ИСО.

    Часть последняя: история Кости

    Теперь  попробуем выяснить, как же будет  выглядеть мир с точки зрения космического брата? Пусть он также  получает факсы от земного брата  и развешивает их на календаре  с учётом времени полета факса с Земли до корабля. Что он получит?

    Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время  путешествия космического брата  есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.

    Разумеется, если посчитать, какие нам нужны  скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата  должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов - не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются противоперегрузочные кресла, а корабль сделан из инопланетянской стали.

    Что же получится?

    В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша - только на 5.

    К сожалению, я не нарисовал 15-летнего  близнеца, поэтому я буду использовать 10-летнюю картинку с припиской "+5".

    Аналогичный результат получается из анализа  конца пути. В самый последний  миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме  того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки  зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.

    Опять-таки, у меня нет 65-летнего рисунка и  я буду использовать 70-летний с пометкой "-5". 
 
 

    Сводку  наблюдений космического брата я  поместил ниже.

    Космический брат
    10     20     25 - 1 д.     25 + 1 д.      30     40
              ТАЙНА          
    Земной  брат
    10     15                 65     70
          +5     ТАЙНА      -5     

    Как видим, у космического брата получается нестыковка. Всю первую половину пути он наблюдает, что земной брат стареет  медленно и еле отрывается от начального возраста в 10 лет. Всю вторую половину полёта он наблюдает, как земной брат еле-еле подтягивается к возрасту 70 лет.

    Где-то между этими участками, в самой  середине полёта, должно происходить  что-то, что "сшивает" процесс старения земного брата воедино.

    Мы  собственно, не будем дальше темнить  и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!  
 
 
 
 
 
 

    Физическая  сущность парадокса  близнецов 

    Хотя  мнимому парадоксу близнецов (парадигме  часов) и посвящено множество  как научных, так и научно-популярных работ, ни в одной из них до конца  так и не вскрыта истинная его физическая сущность. Обычно этот парадокс объясняют тем, что один из близнецов все время движется с постоянной скоростью, а другой, кроме того, в определенные моменты времени совершает еще и ускоренные движения. Такое объяснение указывает лишь на неравнозначность условий движения близнецов. Однако оно все же не разъясняет, почему возраст близнеца-путешественника будет всегда меньше возраста близнеца-домоседа, независимо от длительности их относительного движения с постоянной скоростью а, следовательно, и независимо от величины разницы возрастов, накопившейся в процессе этого равномерного движения в их инерциальных системах отсчета пространственных координат и времени (ИСО). Ведь во всех мысленных экспериментах с идентичными мировыми линиями (МЛ) участков ускоренного движения близнеца-путешественника из-за этого ускоренного движения должна возникать одна и та же конечная разница в возрасте близнецов. Первая же разница, в отличие от этой конечной разницы возрастов, в ИСО каждого из близнецов может достигнуть сколь угодно большего значения. И поэтому, эти разницы все же будут приводить к взаимно противоречивым сведениям о возрасте близнецов. Вскрытие физической сущности мнимого парадокса близнецов и является целью этой статьи. 
 
 
 
 
 

    Первопричины  парадокса близнецов 

    Специальная теория относительности (СТО), на самом деле, допускает возможность существования особой (выделенной) системы отсчета пространственных координат и времени (СО), а именно, – фундаментальной СО не увлекаемого движением физического вакуума (ФВ), в которой частота реликтового излучения является изотропной. В этой СОФВ, мировое пространство и космологическое время которой, согласно Ньютону [2], являются абсолютными, и будем рассматривать движение объектов. На рисунке показаны МЛ равномерного движения двух объектов вдоль одной и той же прямой линии в мировом (абсолютном) пространстве. Первый из них, на котором находится близнец-домосед, движется в СОФВ с абсолютной скоростью V0, а второй, на котором находится близнец-путешественник, сначала с относительной скоростью v1 = (V1 – V0) / (1 – V1V0) удаляется от первого, а затем с относительной скоростью v2 = (V2 – V0) / (1 – V2V0) сближается с ним. Здесь: V1 и V2 – скорости абсолютного движения второго объекта соответственно в прямом и в обратном направлениях. При этом для упрощения математических выкладок принято, что расстояния и пространственные координаты измеряются в световых единицах длины и, поэтому, собственное значение скорости света c = 1.

    

    Рис. 1. МЛ равномерного движения двух объектов вдоль одной и той же прямой линии в мировом (абсолютном) пространстве: 1 – МЛ первого объекта; 2 – МЛ второго объекта во время его удаления от первого объекта; 3 – МЛ второго объекта во время его сближения с первым объектом; 4 – МЛ света

    Пусть в СОФВ одновременно с приходом второго  объекта в точку F первый объект приходит в точку B0, а собственное время движения второго объекта из точки A в точку F равно Δt1. Тогда промежуток космологического (абсолютного) времени, соответствующий этому собственному времени и отсчитываемый в СОФВ от момента прихода первого объекта в точку B0, а второго – в точку F, будет равен: TA = –Γ1Δt1, где Γ1 = (1 – V12)–1/2. В зависимости от величины в точке F абсолютной скорости Vi второго объекта промежутки космологического времени между событиями в точке Bi на первом и в точке F на втором объектах, являющимися одновременными (Δt = 0) в ИСО второго объекта, будут равны: δTi = ΓiVi ∙ xBi, где: xBi – наблюдаемая в ИСО второго объекта координата положения первого объекта. Таким образом, при разных значениях в точке F абсолютной скорости второго объекта одновременными событию в точке F его СО будут события, соответствующие не одному и тому же положению XBi = Γi ∙ xBi в мировом пространстве первого объекта.

    Пусть модули относительных скоростей  движения объектов в процессе их удаления и сближения равны друг другу (v2 = –v1). Тогда в момент изменения направления движения вторым объектом изменение положения первого объекта близнецом-путешественником наблюдаться не будет (xB2 = xB1). Однако, при этом произойдет переход от одновременности в СО близнеца-путешественника с моментом изменения его движения одних событий к одновременности других событий на первом объекте, соответствующих уже другому положению в мировом пространстве последнего: XB2 = XB1(1 –v1V0) / (1 + v1V0). То есть, при переходе второго объекта от движения со скоростью V1 к движению со скоростью V2 происходит замена положений первого объекта, считающихся одновременными с положением второго объекта в точке F. Тем самым, как бы возникает наблюдаемый в СО близнеца-путешественника перепад координатного времени, соответствующего событиям на первом объекте. И, следовательно, имеет место исключение из рассмотрения части путиподобного (стандартного [3]) собственного времени первого объекта, определяющего возраст близнеца-домоседа. Поэтому то и возникает у близнеца-путешественника ложное умозаключение об уменьшении суммарного времени, истекшего на первом объекте с момента разлуки до момента его встречи с находящимся на этом объекте близнецом-домоседом. Это и является физической сущностью мнимого парадокса близнецов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Результаты  непосредственных наблюдений 

    С учетом перепада координатного времени  полное стандартное (путиподобное собственное) время первого объекта, наблюдаемое  близнецом-путешественником, будет  таким же как и в СО первого  объекта. Наличие перепада собственного времени первого объекта («наблюдаемого» близнецом-путешественником опосредствованно через две его ИСО) отнюдь не означает, что информация о событиях, произошедших на первом объекте между точками B1 и B2, не поступает на второй объект. В момент изменения направления движения второго объекта к нему поступает информация о событии, произошедшем на первом объекте в тот момент времени, когда он находился в точке E.

    Сразу же после изменения направления  движения второго объекта изменится и наблюдаемое близнецом-путешественником смещение спектра излучения первого объекта. Это может привести к ложному заключению этим близнецом, что первый объект удалялся от него лишь в течение меньшего времени, чем на самом деле, и уже приближается к нему в течение некоторого времени. И, следовательно, промежутки собственного времени первого объекта, соответствующие взаимному сближению и удалению объектов, будут рассматриваться близнецом-путешественником как имеющие иные значения, нежели наблюдаемые в СО первого объекта близнецом-домоседом. Однако это несоответствие вполне объяснимо неверностью определения (сделанного из ложной предпосылки об изменении направления движения не вторым, а первым объектом) близнецом-путешественником момента прекращения удаления и начала сближения объектов по часам первого объекта. Несмотря на это суммарное значение собственного времени первого объекта, наблюдаемое близнецом-путешественником, будет таким же каким оно наблюдается и в СО первого объекта близнецом-домоседом. А это значит, что на второй объект поступает информация обо всех событиях, произошедших на первом объекте. Из-за движения второго объекта в прямом и в обратном направлениях с разными абсолютными скоростями сокращение расстояний между объектами до и после изменения его движения будут наблюдаться близнецом-путешественником неодинаковыми. При этом изменение расстояния до точки E вследствие неодинакового релятивистского сокращения размеров может привести к взаимному псевдоналожению мнимых промежутков времени взаимного сближения и удаления объектов по часам близнеца-путешественника, отсчитывающим стандартное (путиподобное) время. Это взаимное псевдоналожение промежутков времени обусловлено удалением первого объекта из положения с координатой xE1 в положение с координатой xE2 со скоростью большей скорости света в точке наблюдения. И как бы плавно не происходил переход от V1 к V2, при таком «наблюдении» (опосредствовано через две ИСО) будет иметь место как бы «течение времени вспять», связанное с переходом второго объекта и находящегося на нем близнеца-путешественника из одной ИСО в другую. Непосредственное же наблюдение, как было показано ранее, этого не обнаруживает. Данный псевдоэффект связан с расчетом значений промежутков времени взаимного сближения и удаления объектов, исходя из предположения об одинаковости несобственных (координатных [3]) значений скорости света (vc = 1) во всем собственном пространстве второго объекта, движущегося не инерциально в процессе перехода от равномерного движения со скоростью V1 к равномерному движению со скоростью V2. На самом же деле, это предположение ложно. Несобственные значения скорости света в точках нахождения первого объекта в процессе его перемещения с расстояния xE1 на расстояние xE2 не могут быть меньше скоростей перемещения первого объекта в СО второго объекта. А ведь эти скорости значительно превышают скорость света в точке наблюдения смещения спектра излучения, что имеет место из-за чрезвычайно быстрого изменения в СО второго объекта релятивистского сокращения расстояния до первого объекта.

Информация о работе Парадокс близнецов