Области применения лазеров

Автор работы: Пользователь скрыл имя, 12 Марта 2012 в 01:06, контрольная работа

Описание работы

Первые расчеты, касающиеся возможности создания лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым был открыт рубиновый лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван, Беннет и Херриотт создали гелий-неоновый лазер, работающий в инфракрасной области на ряде линий в районе 1 мк. В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты другие газовые лазеры, .работающие в инфракрасной области, включая лазеры с использованием других благородных газов и атомарного кислорода.

Содержание работы

Краткий исторический обзор 2
Особенности лазерного излучения 4
Лазерная технология 9
Рубиновый лазер 11
Газовые лазеры 12
Области применения лазеров 14
Применение лазеров в промышленности 14
Использование лазеров в информационных технологиях. 15
Применение лазеров в медицине. 17
Список использованной литературы: 2

Файлы: 1 файл

Лазеры.doc

— 131.00 Кб (Скачать файл)

Содержание

 

 

 

 

Содержание              1

Краткий исторический обзор              2

Особенности лазерного излучения              4

Лазерная технология              9

Рубиновый лазер              11

Газовые лазеры              12

Области применения лазеров              14

Применение лазеров в промышленности              14

Использование лазеров в информационных технологиях.              15

Применение лазеров в медицине.              17

Список использованной литературы:              20

3

 


Краткий исторический обзор

   Первые расчеты, касающиеся возможности создания  лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым  был открыт рубиновый лазер, хотя вскоре был создан и газовый лазер. В конце 1960 г. Джаван, Беннет и  Херриотт  создали гелий-неоновый лазер, работающий  в инфракрасной области на ряде линий в районе 1 мк. В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты другие газовые  лазеры, .работающие в инфракрасной области, включая лазеры с использованием других благородных газов и  атомарного кислорода. Однако наибольший интерес к газовым лазерам был вызван открытием генерации гелий-неонового лазера на красной линии 6328 А  при условиях, лишь незначительно отличавшихся от условий, при которых была получена генерация в первом газовом лазере. Получение генерации в видимой области спектра стимулировало интерес не только к поискам дополнительным  переходов такого типа, но и к лазерным применениям, так  как  при этом  были открыты  многие новые  и неожиданные явления, а лазерный луч получил новые применения в качестве лабораторного инструмента. Два года,          последовавшие за открытием генерации на линии 6328 А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности  этого типа лазера. Тем временем продолжались поиски  новых длин волн и были открыты многие инфракрасные  и несколько новых переходов в видимой области спектра.  Наиболее  важным  из  них является  открытие Матиасом и  сотр. импульсных  лазерных переходов  в молекулярном азоте  и в окиси углерода.                      

   Следующим  наиболее  важным  этапом  в  развитии  лазеров  было,  по--видимому, открытие  Беллом  в конце 1963 г. лазера, работающего на  ионах ртути.  Хотя лазер на ионах ртути  сам по  себе не  оправдал первоначальных       надежд  на  получение  больших мощностей  в непрерывном   режиме  в  красной  и   зеленой  областях   спектра,  это открытие  указало  новые  режимы  разряда,   при  которых могут  быть  обнаружены   лазерные  переходы   в  видимой области  спектра.  Поиски  таких переходов  были проведены  также  среди  других  ионов. Вскоре  было обнаружено, что  ионы  аргона  представляют  собой  наилучший  источник  лазерных  переходов  с  большой  мощностью в  видимой области и  что на  них может  быть получена генерация в  непрерывном режиме  . В  результате дальнейших  усовершенствований  аргонового  лазера  в  непрерывном  режиме  была  получена  наиболее   высокая  мощность,  какая только  возможна в  видимой области.  В результате  поисков  была открыта  генерация на  200 ионных переходах,  сосредоточенных  главным  образом  в видимой, а также  в ультрафиолетовой  частях спектра.  Такие поиски,  по-видимому,  еще  не окончены;  в журналах  по прикладной  физике  и в  технических журналах  часто появляются сообщения о генерации на новых длинах волн,        

   Тем временем .технические усовершенствования лазеров быстро расширялись,  в результате  чего исчезли многие  “колдовские”  ухищрения  первых  конструкций гелий-неоновых  и других  газовых  лазеров.  Исследования  таких  лазеров,  начатые  Беннетом  , продолжались до  тех  пор,  пока не  был создан  гелий-неоновый лазер, который  можно  установить  на  обычном  столе  с полной уверенностью  в  том,  что  лазер  будет  функционировать так,  как  это  ожидалось  при  его  создании.  Аргоновый ионный  лазер  не  исследован  столь  же  хорошо; однако большое число  оригинальных  работ   Гордона  Бриджеса и сотр.  позволяет  предвидеть в  разумных пределах возможные параметры такого лазера.                  

   На  протяжении  последнего  года появился ряд интересных  работ,  посвященных   газовым  лазерам, однако  еще  слишком  рано  определять   их  относительную  ценность.  Ко  всеобщему  удивлению   наиболее  важным  достижением  явилось  открытие  Пейтелом    генерации вынужденного  излучения  в  СО2  на  полосе  1,6 мк  с высоким  к.п.д.выходная  мощность в  этих лазерах может быть доведена до сотен ватт,что обещает открыть целую новую область  лазерных  применений

 

Особенности лазерного излучения

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора -оптического квантового генератора, или лазера.

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего усиление света в результате вынужденного излучения”.                                                                                                                         

  Действительно, основной физический процесс, определяющий действие лазера, - это вынужденное испускание излучения. Оно происходит при взаимодействии        фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы)                                  

  В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток  энергии излучается в виде нового фотона с точно такой же энергией, направлением  распространения  и поляризацией, как и у первичного  фотона.  Таким  образом, следствием данного процесса является наличие уже двух абсолютно   идентичных   фотонов. При   дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными  первому  атому, может  возникнуть “цепная реакция” размножения одинаковых фотонов, “летящих” абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения  лавины  идентичных  фотонов необходима среда, в  которой   возбужденных  атомов было бы больше, чем невозбужденных, поскольку  при взаимодействии фотонов с невозбужденными атомами  происходило бы поглощение фотонов. Такая  среда называется  средой  с  инверсной  населенностью  уровней энергии.                                                                                                

  Итак,  кроме  вынужденного  испускания  фотонов  возбужденными  атомами  происходят  также   процесс  самопроизвольного, спонтанного   испускания  фотонов  при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы  А. Эйнштейном в 1916 г.

  Если число возбужденных атомов велико и существует инверсная выделенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем,  невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет всенарастающую лавину  появления  идентичных фотонов. Произойдет усиление спонтанного излучения.                

На  возможность  усиления  света  в  среде с инверсной населенностью за счет  вынужденного  испускания  впервые  указал  в  1939  г. советский физик

В.А.Фабрикант, предложивший создавать  инверсную  населенность в  электрическом разряде в газе.                             

При  одновременном  рождении ( принципиально   это возможно) большого    числа  спонтанно  испущенных фотонов  возникнет большое  число  лавин,   каждая  из которых  будет  распространяться  в   своем  направлении, заданном     первоначальным  фотоном  соответствующей лавины. В  результате  мы  получим  потоки   квантов  света ,но  не  сможем  получить   ни  направленного   луча,  ни высокой   монохроматичности,   так   как   каждая  лавина инициировалась  собственным   первоначальным   фотоном.  Для  того  чтобы  среду  с  инверсной населенностью можно   было    использовать   для  генерации   лазерного луча, т. е.  направленного  луча с  высокой монохроматичностью, необходимо  “снимать” инверсную  населенность с помощью  первичных  фотонов,  уже  обладающих одной и  той   же  энергией  ,совпадающей  с   энергией  данного перехода  в  атоме.  В  этом случае  мы будем  иметь лазерный усилитель света.                                      

  Существует,   однако,   и   другой    вариант   получения лазерного   луча,   связанный   с   использованием  системы обратной  связи.  Спонтанно родившиеся   фотоны,   направление   распространения   которых  не перпендикулярно плоскости зеркал, создадут лавины фотонов, выходящие за пределы среды.  В то  же время  фотоны, направление распространения  которых перпендикулярно плоскости зеркал, создадут  лавины, многократно усиливающиеся  в среде  вследствие многократного отражения от зеркал. Если одно из  зеркал будет      обладать небольшим пропусканием, то через него будет выходить направленный  поток   фотонов  перпендикулярно плоскости  зеркал. При  правильно подобранном пропускании зеркал, точной их настройке относительно  друг  друга  и относительно  продольной оси  среды с инверсной  населенностью  обратная связь  может оказаться  настолько  эффективной, что  излучением “вбок” можно  будет  полностью  пренебречь  по  сравнению  с излучением,  выходящим  через  зеркала.   На  практике  это,  действительно,  удается  сделать.   Такую  схему обратной  связи  называют  оптическим  резонатором,  и именно  этот тип  резонатора используют  в большинстве существующих лазеров.                               

   В 1955 г. одновременно и независимо Н.Г. Басовым и А. М. Прохоровым  в  СССР  и  Ч.  Таунсом в  США был  предложен принцип создания  первого в  мире генератора квантов   электромагнитного   излучения  на   среде  с  инверсной   населенностью,   в   котором   вынужденное  испускание в  результате использования  обратной связи приводило  к  генерации   чрезвычайно  монохроматического излучения.                                     

   Спустя несколько лет, в 1960 г.,  американским физиком  Т.  Мейманом был  запущен первый  квантовый генератор оптического диапазона - лазер, в  котором обратная  связь  осуществлялась  с помощью  описанного выше оптического резонатора, а инверсная  населенность возбуждалась  в  кристаллах  рубина,  облучаемых  излучением  ксеноновой  лампы-вспышки.   Рубиновый  кристалл  представляет  собой кристалл  оксида алюминия  АL2О3 с небольшой  добавкой  =  О,05%  хрома.  При  добавлении атомов  хрома  прозрачные  кристаллы  рубина  приобретают розовый цвет и поглощают  излучение в  двух полосах  ближней  ультрафиолетовой области  спектра. Всего кристаллами   рубина   поглощается  около   15%  света лампы-вспышки. При  поглощении  света   ионами  хрома происходит  переход  ионов  в  возбужденное  состояние В результате внутренних  процессов возбужденные ионы  хрома переходят  в основное  состояние не сразу, а через  два возбужденных  уровня. На  этих уровнях происходит  накопление  ионов,  и при  достаточно мощной  вспышке   ксеноновой  лампы   возникает  инверсная населенность между промежуточными    уровнями и основным уровнем ионов хрома.                    

  Торцы  рубинового  стержня   полируют, покрывают отражающими     интерференционными    пленками, выдерживая  при  этом  строгую   параллельность торцов  друг другу.                                      

При   возникновении   инверсии   населенностей  уровней ионов  хрома  в  рубине  происходит  лавинное нарастание числа вынужденно испущеных фотонов,и обратной связи на оптическом резонаторе, образованном зеркалами на торцах рубинового стержня, обеспечивает формирование узконаправленного луча красного света. Длительность лазерного импульса==0.0001 с, немного короче длительности вспышки ксеноновой лампы. Энергия импульса рубинового лазера около 1ДЖ.

   С помощью механической системы (вращающееся зеркало) или быстродействующего электрического затвора можно “включить “ обратную связь (настроить одно из зеркал) в момент достижения максимальной  инверсии населенностей и, следовательно, максимального усиления активной среды. В этом случае мощность индуцированного излучения будет чрезвычайно велика и инверсия населенности “снимется” вынужденным излучением за очень короткое время.             

   В этом режиме модулированной добротности резонатора излучается гигантский импульс лазерного излучения. Полная энергия этого импульса останется приблизительно на том же уровне, что и в режиме “свободной генерации”, но вследствие сокращения в сотни раз длительности импульса также в сотни раз возрастает мощность излучения, достигая значения =100000000Вт.

   Рассмотрим некоторые уникальные свойства лазерного излучения.                             

   При спонтанном излучении атом излучает спектральную линию конечной ширины. При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать  прежде всего  в центре спектральной  линии  данного  атомного  перехода, и в результате этого  процесса ширина спектральной линии первоначального  спонтанного  излучения  будет  уменьшаться. На  практике  в специальных  условиях удается сделать относительную ширину спектральной  линии лазерного излучения в 1*10000000-1*100000000 раз меньше, чем ширина самых  узких  линий  спонтанного  излучения, наблюдаемых в природе.                                       

  Кроме  сужения  линии  излучения  в   лазере  удается получить расходимость луча менее 0,00001 радиана, т.  е. на уровне угловых секунд.                               

  Известно,  что  направленный  узкий  луч  света можно получить в принципе от  любого источника,  поставив на пути светового потока ряд экранов с  маленькими отверстиями,  расположенными  на  одной  прямой. Представим себе, что мы взяли нагретое черное  тело и  с помощью диафрагм получили луч света, из которого посредством призмы  или  другого  спектрального  прибора  выделили луч  с  шириной   спектра,   соответствующей  ширине спектра лазерного  излучения. Зная  мощность лазерного излучения, ширину его  спектра и  угловую расходимость луча,  можно  с   помощью  формулы   Планка  вычислить температуру  воображаемого черного  тела, использованного в качестве источника светового  луча, эквивалентного лазерному лучу. Этот расчет приведет нас к фантастической  цифре:  температура  черного   тела  должна быть порядка десятков миллионов  градусов! Удивительное свойство  лазерного луча  - его  высокая эффективная температура (даже  при относительно  малой средней мощности   лазерного   излучения  или  малой  энергии лазерного  импульса)  открывает  перед исследователями большие  возможности,  абсолютно   неосуществимые  без использования лазера.                                

Лазеры   различаются:   способом  создания   в  среде инверсной  населенности,  или, иначе  говоря, способом накачки  (оптическая  накачка,  возбуждение  электронным ударом, химическая накачка и т. п.);  рабочей средой (газы,  жидкости, стекла,  кристаллы, полупроводники и т.д.); конструкцией     резонатора; режимом работы   (импульсный,   непрерывный).   Эти различия определяются   многообразием  требований  к  характеристикам лазера в связи  с его  практическими применениями. 

 

Лазерная технология

   Лазеры нашли широкое применение, и в частности используются  в  промышленности  для  различных  видов обработки материалов: металлов, бетона, стекла, тканей, кожи и т. п.                                    

   Лазерные  технологические  процессы   можно  условно разделить на два вида. Первый  из них  использует возможность  чрезвычайно  тонкой   фокусировки  лазерного луча и точного дозирования  энергии как  в импульсном, так и  в непрерывном  режиме. В  таких технологических процессах  применяют  лазеры   сравнительно  невысокой средней  мощности: это  газовые  лазеры  импульсно--периодического действия, лазеры на  кристаллах иттрий-алюминиевого  граната  с  примесью неодима.  С помощью последних были  разработаны технология  сверления тонких отверстий (диаметром 1 - 10 мкм и глубиной до 10 -100  мкм) в  рубиновых и  алмазных камнях  для часовой промышленности  и  технология   изготовления  фильеров для протяжки тонкой  проволоки. Основная  область применения  маломощных   импульсных  лазеров   связана  с резкой  и  сваркой  миниатюрных деталей  в микроэлектронике  и  электровакуумной  промышленности,  с маркировкой  миниатюрных  деталей,  автоматическим  выжиганием  цифр, букв, изображений для  нужд полиграфической промышленности.                                  

   В  последние  годы  в  одной  из  важнейших областей микроэлектроники -        фотолитографии,  без  применения которой  практически  невозможно  изготовление  сверхминиатюрных  печатных плат,  интегральных схем  и других   элементов   микроэлектронной   техники, обычные источники  света  заменяются  на  лазерные.  С помощью лазера на ХеСL (1=308 нм) удается  получить разрешение в фотолитографической технике до 0,15 - 0,2 мкм.     

   Дальнейший   прогресс   в   субмикронной  литографии связан  с применением  в   качестве  экспонирующего источника  света  мягкого рентгеновского  излучения из плазмы,  создаваемой  лазерным  лучом.  В  этом случае предел  разрешения,  определяемый  длиной  волны рентгеновского  излучения  (1= 0,01 - О,001  мкм), оказывается просто фантастическим.

Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью: от 1кВт и выше.  Мощные лазеры используют в таких энергоемких технологических процессах, как резка  и сварка толстых стальных листов, поверхностная закалка, наплавление и легирование крупногабаритных деталей, очистка зданий от поверхностей загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейерном производстве.

   Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов. Так, скорость лазерной сварки стальных листов толщиной 14  мКм достигает 100м\ч при расходе электроэнергии 10 кВт.ч.                        

Рубиновый лазер

Рассмотрим каким образом реализуются эти требования на примере конструкции лазера, построенного с использованием искусственно выращенного кристалла рубина, называемого, обычно, рубиновым лазером.

Лазер состоит из трех основных частей: активного (рабочего) вещества, резонансной системы, представляющей две параллельные пластины с нанесенными на них отражающими покрытиями, и системы возбуждения (накачки), в качестве которой обычно используется ксеноновая лампа-вспышка с источником питания (рис. 1).

 

Рис 1. Схема рубинового лазера.

 

Рубин представляет собой окись алюминия, в которой часть атомов алюминия замещена атомами хрома (Al2O3*Cr2O3) Активным веществом служат ионы хрома Cr3+. От содержания хрома в кристалле зависит его окраска. Обычно используется бледно-розовый рубин, содержащий около 0,05% хрома. Рубиновый кристалл выращивают в специальных печах, затем полученную заготовку отжигают и обрабатывают, придавая ей форму стержня. Длина стержня колеблется от 2 до 30 см, диаметр от 0,5 до 2 см. Плоские торцовые концы делают строго параллельными, шлифуют и полируют с высокой точностью. Иногда отражающие поверхности наносят не на отдельные отражающие пластины, а непосредственно на торцы рубинового стержня. Поверхности торцов серебрят, причем поверхность одного торца делают полностью отражающей, другого — отражающей частично. Обычно коэффициент пропускания света второго торца составляет около 10—25%, но может быть и другим.

Рубиновый стержень помещают в спиральную импульсную ксеноновую лампу, витки которой охватывают его со всех сторон. Вспышка лампы длится миллисекунды. За это время лампа потребляет энергию в несколько тысяч джоулей, большая часть которой уходит на нагревание прибора. Другая, меньшая часть, в виде голубого и зеленого излучения поглощается рубином. Эта энергия и обеспечивает возбуждение ионов хрома.

Газовые лазеры                   

   Газовые лазеры  представляют собой,  пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры.  Газовым лазерам  также, по-видимому, посвящена большая часть  выполненных исследований. Среди  различных  типов  газовых  лазеров  всегда можно  найти  такой,  который  будет  удовлетворять  почти любому   требованию,  предъявляемому   к  лазеру, за  исключением очень большой  мощности  в   видимой  области спектра  в  импульсном   режиме.  Большие   мощности  необходимы   для  многих   экспериментов  при   изучении  нелинейных   оптических   свойств  материалов. В  настоящее время  большие  мощности  в  газовых  лазерах  не  получены по той  простой причине,  что плотность  атомов в  них недостаточно  велика.  Однако  почти  для  всех  других целей можно  найти  конкретный  тип  газового   лазера,  который будет  превосходить  как  твердотельные  лазеры  с  оптической  накачкой,  так   и  полупроводниковые   лазеры. Много усилий  было  направлено  на  то,  чтобы  эти  лазеры могли конкурировать с газовыми лазерами, и в ряде случаев был достигнут  определенный успех,  однако он  всегда оказывался  на  грани  возможностей, в  то время  как газовые лазеры  не   обнаруживают  никаких   признаков уменьшения популярности.                                        

   Особенности   газовых   лазеров   большей   часто  обусловлены  тем,  что  они,  как  правило,  являются  источниками атомных   или   молекулярных   спектров.    Поэтому   длины волн   переходов    точно   известны    они   определяются атомной  структурой  и  обычно   не  зависят   от условий окружающей  среды.  Стабильность  длины   волны  генерации  при  определенных  усилиях может  быть значительно улучшена  по  сравнению  со   стабильностью  спонтанного    излучения.  В  настоящее  время  имеются лазеры  с монохроматичностыо,  лучшей,  чем  в  любом  другом приборе. При   соответствующем   выборе  активной   среды  может быть осуществлена  генерация в  любой части  спектра, от ультрафиолетовой  (~2ООО  А)  до  далекой  инфракрасной области  (~ 0,4 мм),  частично  захватывая  микроволновую  область.  Нет также  оснований сомневаться,  что в  будущем  удастся  создать  лазеры для  вакуумной ультрафиолетовой  области  спектра.  Разреженность рабочего газа обеспечивает оптическую  однородность среды  с низким  коэффициентом  преломления,  что  позволяет  применять   простую   математическую  теорию   для  описания        структуры мод резонатора и дает уверенность в  том, что  свойства  выходного  сигнала  близки  к  теоретическим. Хотя к. п. д. превращения электрической энергии в энергию вынужденного излучения в  газовом лазере  не может быть  таким  большим,  как в  полупроводниковом лазере, однако  благодаря  простоте  управления  разрядом газовый лазер оказывается  для большинства  целей наиболее  удобным  в  работе как  один из  лабораторных приборов.        Что  касается  большой   мощности  в   непрерывном  ре жиме  (в  противоположность  импульсной  мощности),  то  природа  газовых  лазеров позволяет  им в  этом отношении превзойти все другие типы лазеров.                        

 

Области применения лазеров

Уникальные свойства лазерного луча, многообразие конструкций современных лазеров и устройств на их основе обуславливают широкое применение лазерных технологий в различных областях человеческой деятельности: промышленности, науке, медицине и быту. Появление лазеров и внедрение их во многие отрасли промышленности и науки произвело в этих отраслях в буквальном смысле революцию. Благодаря этому стало возможным развитие новых более эффективных технологий, повышение производительности труда, точности измерений и качества обработки материалов. Рассмотрим здесь лишь наиболее важные области применения лазерной техники.

Применение лазеров в промышленности

Сразу же после появления лазеров и начала исследования взаимодействия лазерного луча с различными материалами стало ясно, что этот инструмент может найти широкое применение в разнообразных промышленных технологических процессах. Дело в том, что лазерный импульс несёт в себе огромный запас энергии (рубиновый лазер при кратковременном импульсе может достичь мощности в несколько миллиардов ватт. При попадании подобного луча на поверхность материала он вызывает мгновенное разогревание этой поверхности вплоть до испарения даже очень тугоплавкого материала. Это обстоятельство используется при сверлении отверстий в твердых материалах, резке и сварке металлов и пластмасс, заточке режущих инструментов, в том числе изготовленных из сверхтвердых сплавов. Сверление отверстий в алмазных фильерах при помощи традиционных способов занимает около двух часов. Этот же процесс, осуществляемый при помощи лазерной установки, длится не более 0,1секунд. Для того чтобы прожечь стальную пластинку толщиной 1 мм лучом лазера, достаточно импульса длительностью в одну тысячную секунды с энергией 0,5 дж. В результате получается отверстие порядка 0,1—0,2 мм. Лучом такой же мощности можно сварить два куска фольги толщиной 0,05мм или две тонкие проволочки.

Чтобы прожечь стальную пластинку толщиной до 5 мм, нужен импульс с энергией от 20 до 100 дж. В этом случае луч лазера необходимо сфокусировать в одну точку, для чего применяется система линз. Отверстия, образующиеся в металле под действием такого луча, обычно бывают довольно большого диаметра.

Другой важной областью применения лазеров в промышленности можно считать использование их в различных контрольно-измерительных приборах. Луч лазера представляет собой электромагнитную волну со строго определённой длинной.

Использование лазеров в информационных технологиях.

Поскольку лазерное излучение является электромагнитной волной, логично было бы предположить, что лазерный луч можно использовать для передачи информации примерно так же как мы передаём информацию с помощью радиоволн. С теоретической точки зрения никаких препятствий этому нет. Но на практике такая передача информации сталкивается с существенными трудностями. Эти трудности связаны с особенностями распространения света в атмосфере. Такое распространение, как известно, в значительной степени зависит от атмосферных помех: тумана, наличия пыли, атмосферных осадков и т.п. Не смотря на то, что лазерное излучение обладает совершенно уникальными свойствами, оно так же не лишено этих недостатков.

Одним из решений проблемы нейтрализации влияния атмосферных помех на распространение лазерного луча стало использование волоконно-оптических линий. Основу таких линий составляют тончайшие стеклянные трубочки (оптические волокна), уложенные в специальную непрозрачную оболочку. Конфигурация оптических волокон рассчитывается таким образом, чтобы при прохождении по ним лазерного луча возникал эффект полного отражения, что практически полностью исключает потери информации при её передаче. Волоконно-оптические линии обладают огромной пропускной способностью. По одной нитке такой линии можно одновременно передавать в несколько раз больше телефонных разговоров, чем по целому многожильному кабелю, составленному из традиционных медных проводов. Кроме того на распространение лазерного луча по волоконно-оптическим линиям не оказывают влияние практически никакие помехи. В настоящее время волоконно-оптические линии используются при передаче сигналов кабельного телевидения высокого качества, а так же для обмена информацией между компьютерами через интернет по выделенным линиям. Существуют уже и телефонные линии, построенные с использованием оптических волокон.

С появлением полупроводниковых лазеров появилась возможность использования их для записи и чтения информации на информационных носителях – лазерных компакт-дисках. Лазерный диск представляет собой круглую пластинку, изготовленную из алюминия, покрытую прозрачным пластмассовым защитным слоем. В начале изготавливается так называемый мастер-диск, на который с помощью луча лазера наносится информация в двоичном представлении. Лазерный импульс возникает только тогда, когда через записывающее устройство проходит логическая единица. В момент прохождения логического нуля импульс не возникает. В результате в некоторых местах поверхности диска, которые теперь соответствуют логическим единицам в массиве информации, алюминий испаряется. Мастер-диск служит матрицей, с которой печатаются многочисленные копии, причём на копии в тех местах, где на мастер-диске были светоотражающие участки, возникают выемки, рассеивающие свет, а в тех местах, где на мастер-диске были выемки, на копии остаются светоотражающие островки. Чтение информации с компакт-диска осуществляется так же лазером, только значительно меньшей мощности. Луч лазера направляется на вращающийся с большой скоростью диск под некоторым углом. Частота лазерных импульсов синхронизирована со скоростью вращения диска. Луч лазера, попадая на светоотражающий островок, отражается от него и улавливается фотоэлементом. В результате в электрической цепи считывающего устройства возникает ток и сигнал воспринимается как логическая единица. Если же луч лазера попадает на рассеивающую свет выемку, то отраженный луч проходит мимо фотоэлемента и электрического тока в цепи считывающего устройства не возникает. В этом случае сигнал интерпретируется как логический ноль. В настоящее время лазерные компакт-диски широко используются как для хранения компьютерной информации, так и для хранения и распространения музыкальных программ, предназначенных для воспроизведения на лазерных проигрывателях.

Применение лазеров в медицине.

Совершенно особого разговора заслуживает применение лазеров в медицине. Ещё на заре развития лазерной техники медиков привлекла возможность использования лазеров в хирургии. Уже в середине 60-ых годов XX века были построены лазерные установки, которые с успехом использовались при хирургических операциях. В этих установках лазер соединен с гибким световодом, изготовленным из тончайших стеклянных или пластмассовых трубок (все те же оптические волокна). На конце световода закреплена головка с фокусирующей линзой. Световод вводится внутрь организма через небольшой разрез или другим доступным способом. Манипулируя световодом, хирург направляет луч лазера на оперируемый объект, оставляя нетронутыми соседние органы и ткани. При этом достигается высокая точность и стерильность оперативного вмешательства. При таких операциях значительно сокращается кровопотеря, что облегчает протекание послеоперационной реабилитации.

Особенно широкое применение нашли лазерные инструменты в хирургии глаза. Глаз, как известно, представляет орган, обладающий очень тонкой структурой. В хирургии глаза особенно важны точность и быстрота манипуляций. Кроме того выяснилось, что при правильном подборе частоты излучения лазера оно свободно проходит через прозрачные ткани глаза, не оказывая на них никакого действия. Это позволяет делать операции на хрусталике глаза и глазном дне, не делая никаких разрезов вообще. В настоящее время успешно проводятся операции по удалению хрусталика путём испарения его очень коротким и мощным импульсом. При этом не происходит повреждение окружающих тканей, что ускоряет процесс заживления, составляющий буквально несколько часов. В свою очередь, это значительно облегчает последующую имплантацию искусственного хрусталика. Другая успешно освоенная операция – приваривание отслоившейся сетчатки.

Лазеры довольно успешно применяются и в лечении таких распространённых сейчас заболеваний глаза как близорукость и дальнозоркость. Одной из причин этих заболеваний является изменение в силу каких-либо причин конфигурации роговицы глаза. С помощью очень точно дозированных облучений роговицы лазерным излучением можно исправить её изъяны, восстановив нормальное зрение.

Трудно переоценить значение применения лазерной терапии при лечении многочисленных онкологических заболеваний, вызванных неконтролируемым делением видоизменённых клеток. Точно фокусируя луч лазера на скоплении раковых клеток, можно полностью уничтожить эти скопления, не повреждая здоровые клетки.

Разнообразные лазерные зонды широко используются при диагностике заболеваний различных внутренних органов, особенно в тех случаях, когда применение других методов невозможно или сильно затруднено.

 

 

 

 

 

 

 

 

 

3

 


Список использованной литературы:

 

1.Энциклопедический словарь юного физика. Мигдал А.Б. Москва “Педагогика” 1991г.

2. “Физика”  О.Ф.Кабардин Москва “Просвещение” 1988г.

3.”Газовые лазеры”. Н.Н.Соболев Москва “Мир” 1968г.

4. «Лазеры: Действительность и надежды» Л. В. Тарасов Москва «Наука», 1985

3

 

Информация о работе Области применения лазеров